积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(206)VirtualBox(113)Apache Kyuubi(36)Pandas(32)机器学习(16)Apache Flink(3)Apache Karaf(2)Kubernetes(1)Istio(1)dapr(1)

语言

全部英语(199)中文(简体)(5)俄语(1)英语(1)

格式

全部PDF文档 PDF(187)其他文档 其他(18)PPT文档 PPT(1)
 
本次搜索耗时 0.098 秒,为您找到相关结果约 206 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • Apache Flink
  • Apache Karaf
  • Kubernetes
  • Istio
  • dapr
  • 全部
  • 英语
  • 中文(简体)
  • 俄语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Chapter 2 - Compression Techniques “I have made this longer than usual because I have not had time to make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep deep learning efficiency. Now, we will elaborate on one of those ideas, the compression techniques. Compression techniques aim to reduce the model footprint (size, latency, memory etc.). We can reduce the chapter, we introduce Quantization, a model compression technique that addresses both these issues. We’ll start with a gentle introduction to the idea of compression. Details of quantization and its applications
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    Advanced Compression Techniques “The problem is that we attempt to solve the simplest questions cleverly, thereby rendering them unusually complex. One should seek the simple solution.” — Anton Pavlovich Pavlovich Chekhov In this chapter, we will discuss two advanced compression techniques. By ‘advanced’ we mean that these techniques are slightly more involved than quantization (as discussed in the second the quality of our models. Did we get you excited yet? Let’s learn about these techniques together! Model Compression Using Sparsity Sparsity or Pruning refers to the technique of removing (pruning)
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Chapter 3 - Learning Techniques “The more that you read, the more things you will know. The more that you learn, the more places you'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate translation accuracy would garner better consumer support. In this chapter, our focus will be on the techniques that enable us to achieve our quality goals. High quality models have an additional benefit in first chapter, we briefly introduced learning techniques such as regularization, dropout, data augmentation, and distillation to improve quality. These techniques can boost metrics like accuracy, precision
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    Chapter 6 - Advanced Learning Techniques “Tell me and I forget, teach me and I may remember, involve me and I learn.” – Benjamin Franklin This chapter is a continuation of Chapter 3, where we introduced introduced learning techniques. To recap, learning techniques can help us meet our model quality goals. Techniques like distillation and data augmentation improve the model quality, without increasing the achieve impressive quality with a small number of labels. As we described in chapter 3’s ‘Learning Techniques and Efficiency’ section, labeling of training data is an expensive undertaking. Factoring in the
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient models & layers, infrastructure). Our hope is that tools at your disposal to achieve what you want. The subsequent chapters will delve deeper into techniques, infrastructure, and other helpful topics where you can get your hands dirty with practical projects possible classes. This helped with creating a testbed for researchers to experiment with. Along with techniques like Transfer Learning to adapt such models for the real world, and a rapid growth in data collected
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    Schmidt in ANALOG magazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However deep learning era). Techniques like Principal Components Analysis, Low-Rank Matrix Factorization, etc. are popular tools for dimensionality reduction. We will explain these techniques in further detail in chapter 2. We could also incorporate compression techniques such as sparsity, k-means clustering, etc. which will be discussed in the later chapters. 2. Even after compression, the vocabulary itself is large:
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox UserManual_fr_FR.pdf

    la synchronization des indicateurs du clavier . . . . . . . . . . . . . 207 10 Sous-bassements techniques 208 10.1 Où VirtualBox stocke ses fichiers . . . . . . . . . . . . . . . . . . . . . . . . . Historique des changements, page 247. 11 1 Premiers pas 1.1 À quoi sert la virtualisation ? Les techniques and les fonctionnalités offertes par VirtualBox servent dans plusieurs scenari : • Lancer plusieurs VirtualBox même sur du vieux matériel où ces fonctionnalités ne sont pas présentes. Les détails techniques sont expliqués a chapitre 10.3, Virtualisation matérielle vs. logicielle, page 213. • Suppléments
    0 码力 | 386 页 | 5.61 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 5.1.4 User Manual

    in chapter 15, Change log, page 270. 11 1 First steps 1.1 Why is virtualization useful? The techniques and features that VirtualBox provides are useful for several scenarios: • Running multiple operating algorithm allowing a higher com- pression ratio than standard RDP bitmap compression methods. It is possible to increase the compression ratio by lowering the video quality. The VRDP server automatically detects defined as a value from 10 to 100 percent, representing a JPEG compression level (where lower numbers mean lower quality but higher compression). The quality can be changed using the following command: VBoxManage
    0 码力 | 351 页 | 4.13 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 5.1.32 User Manual

    in chapter 15, Change log, page 272. 11 1 First steps 1.1 Why is virtualization useful? The techniques and features that VirtualBox provides are useful for several scenarios: • Running multiple operating algorithm allowing a higher com- pression ratio than standard RDP bitmap compression methods. It is possible to increase the compression ratio by lowering the video quality. The VRDP server automatically detects defined as a value from 10 to 100 percent, representing a JPEG compression level (where lower numbers mean lower quality but higher compression). The quality can be changed using the following command: VBoxManage
    0 码力 | 363 页 | 4.18 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 5.1.18 User Manual

    in chapter 15, Change log, page 272. 11 1 First steps 1.1 Why is virtualization useful? The techniques and features that VirtualBox provides are useful for several scenarios: • Running multiple operating algorithm allowing a higher com- pression ratio than standard RDP bitmap compression methods. It is possible to increase the compression ratio by lowering the video quality. The VRDP server automatically detects defined as a value from 10 to 100 percent, representing a JPEG compression level (where lower numbers mean lower quality but higher compression). The quality can be changed using the following command: VBoxManage
    0 码力 | 359 页 | 4.16 MB | 1 年前
    3
共 206 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 21
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterCompressionTechniquesAdvancedTechnicalReviewIntroductionArchitecturesOracleVMVirtualBoxUserManualfrFRpdf5.1UserManual3218
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩