积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(474)VirtualBox(113)机器学习(62)OpenShift(52)Apache Kyuubi(44)Kubernetes(39)Pandas(32)Istio(26)rancher(18)云原生CNCF(13)

语言

全部英语(291)中文(简体)(166)英语(9)中文(繁体)(3)中文(简体)(3)西班牙语(1)

格式

全部PDF文档 PDF(448)其他文档 其他(24)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.052 秒,为您找到相关结果约 474 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • 机器学习
  • OpenShift
  • Apache Kyuubi
  • Kubernetes
  • Pandas
  • Istio
  • rancher
  • 云原生CNCF
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Handle Edge Cloud Network with KubeBus

    Handle Edge Cloud Network with KubeBus Yulin Sun, yulin.sun@huawei.com Seattle Cloud Lab, Huawei R&D USA, Bellevue WA Agenda • Edge sample user scenarios • Edge network characteristics • Related work Sample Scenarios HiLens Campus surveillance Huawei Hilens Edge network characteristics • Edge Nodes running at private network • Connect to Cloud behind NAT gateway • Mightn’t have direct connection Cluster Management • There is cloud cluster, edge cluster, i.e. multiple nodes running in private network • Edge nodes, Edge cluster and cloud cluster needs acting as a single cluster Edge Node Management
    0 码力 | 10 页 | 1.17 MB | 1 年前
    3
  • pdf文档 Handle Edge Cloud Network with KubeBus

    Handle Edge Cloud Network with KubeBus Yulin Sun, yulin.sun@huawei.com Seattle Cloud Lab, Huawei R&D USA, Bellevue WA Agenda • Edge sample user scenarios • Edge network characteristics • Related work Sample Scenarios HiLens Campus surveillance Huawei Hilens Edge network characteristics • Edge Nodes running at private network • Connect to Cloud behind NAT gateway • Mightn’t have direct connection Cluster Management • There is cloud cluster, edge cluster, i.e. multiple nodes running in private network • Edge nodes, Edge cluster and cloud cluster needs acting as a single cluster Edge Node Management
    0 码力 | 10 页 | 1.17 MB | 1 年前
    3
  • pdf文档 Train-Val-Test-交叉验证

    Train-Val-Test划分 主讲人:龙良曲 Recap How to detect Splitting Train Set Test Set For example 60K 10K test while train train test trade-off Overfitt ing For others judge ▪ Kaggle Train Set Test Set Set Val Set Unavailable train-val-test K-fold cross-validation Train Set Test Set Val Set k-fold cross validation ▪ merge train/val sets ▪ randomly sample 1/k as val set 下一课时 减轻Overfitting Thank
    0 码力 | 13 页 | 1.10 MB | 1 年前
    3
  • pdf文档 keras tutorial

    prepared for professionals who are aspiring to make a career in the field of deep learning and neural network framework. This tutorial is intended to make you comfortable in getting started with the Keras framework 12 Convolutional Neural Network (CNN) ........................................................................................................... 13 Recurrent Neural Network (RNN) .................. ........................................................... 71 12. Keras ― Convolution Neural Network ................................................................................................
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.13 网络

    网 网络 络 OPERATOR 概述 概述 4.1. CLUSTER NETWORK OPERATOR 4.2. DNS OPERATOR 4.3. INGRESS OPERATOR 4.4. 外部 DNS OPERATOR 4.5. INGRESS NODE FIREWALL OPERATOR 4.6. NETWORK OBSERVABILITY OPERATOR 第 第 5 章 章 OPENSHIFT PLATFORM 中的 中的 CLUSTER NETWORK OPERATOR 5.1. CLUSTER NETWORK OPERATOR 5.2. 查看集群网络配置 5.3. 查看 CLUSTER NETWORK OPERATOR 状态 5.4. 查看 CLUSTER NETWORK OPERATOR 日志 5.5. CLUSTER NETWORK OPERATOR 配置 5.6. 其他资源 VRF 分配从属网络 第 第 26 章 章 硬件网 硬件网络 络 26.1. 关于单根 I/O 虚拟化(SR-IOV)硬件网络 26.2. 安装 SR-IOV NETWORK OPERATOR 26.3. 配置 SR-IOV NETWORK OPERATOR 26.4. 配置 SR-IOV 网络设备 26.5. 配置 SR-IOV 以太网网络附加 26.6. 配置 SR-IOV INFINIBAND
    0 码力 | 697 页 | 7.55 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    章 分类问题 2 集共 70000 张图片。其中 60000 张图片作为训练集?train(Training Set),用来训练模型,剩 下 10000 张图片作为测试集?test(Test Set),用来预测或者测试,训练集和测试集共同组成 了整个 MNIST 数据集。 考虑到手写数字图片包含的信息比较简单,每张图片均被缩放到28 × 28的大小,同时 只保留了灰度信息,如图 ? (?) − ?? (?)) 2 10 ?=1 ? ?=1 只需要采用梯度下降算法来优化损失函数得到?和?的最优解,然后再利用求得的模型去 预测未知的手写数字图片? ∈ ?test即可。 3.4 真的解决了吗 按照上述方案,手写数字图片识别问题似乎得到较好地解决?事实果真如此吗?深入 研究的话,就会发现,至少存在两大问题: 预览版202112 第 3 章 分类问题 模块的输出??连同它的网络层参数??和??等称为一层网络层。特别地,对于网络中间的 层,也叫作隐藏层,最后一层也叫作输出层。这种由大量神经元模型连接形成的网络结构 称为神经网络(Neural Network)。从这里可以看到,神经网络并不难理解,神经网络每层的 节点数和神经网络的层数或结构等决定了神经网络的复杂度。 预览版202112 第 3 章 分类问题 10 输入层:?
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    to achieve the desired model quality on our task. 2. Fine-tuning: This step adapts a pre-trained network to a specific task. Fine-tuning is compute efficient since we reuse the same base model for all the They demonstrate that using a network pre-trained in this fashion improves the quality of the final object detection task, as compared to randomly initializing the network. Similarly, another task is to 6-4 (b)). The authors report that the network trained in a self-supervised manner this way can be fine-tuned to perform nearly as well as a fully supervised network. 3 Gidaris, Spyros, et al. "Unsupervised
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Istio Security Assessment

    overall architecture review which extrapolated areas of focus for subsequent phases of the assessment. A test plan was created which matched areas of code with specific security controls (e.g. service discovery NCC Group used various hosting options (i.e. Minikube, GKE, KOPS) to build reference clusters and test various configurations. These reference architectures were used to provide testers with a way of validating Method Code-assisted Platforms Golang, Kubernetes Dates 2020-07-06 to 2020-07-31 Environment Local Test Environment Consultants 4 Level of Effort 50 person days Targets istio/istio Istio Source code
    0 码力 | 51 页 | 849.66 KB | 1 年前
    3
  • pdf文档 Dapr july 2020 security audit report

    Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. R. Peraglie, J. Larsson Index Introduction Scope Test Coverage Identified Vulnerabilities DAP-01-002 WP2: Insufficient context separation leads to RCE application (Medium) Miscellaneous Issues DAP-01-001 WP1: Sidecar allows MDNS probes to docker network (Info) DAP-01-007 WP2: HTTP Parameter Pollution in Azure SignalR binding (Info) DAP-01-009 WP2: DAP-01-011 WP2: HTTP Parameter Pollution in Hashicorp secret vault (Low) Orchestration Hardening Network Policy Zero-Trust Concepts RBAC Secrets Management Conclusions Cure53, Berlin · 07/01/20
    0 码力 | 19 页 | 267.84 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    weight of that connection). Can we do the same with neural networks? Can we optimally prune the network connections, remove extraneous nodes, etc. while retaining the model’s performance? In this chapter depicts two networks. The one on the left is the original network and the one on the right is its pruned version. Note that the pruned network has fewer nodes and some retained nodes have fewer connections Figure 5-1: An illustration of pruning weights (connections) and neurons (nodes) in a neural network consisting of fully connected layers. Exercise: Sparsity improves compression Let's import the
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 474 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 48
前往
页
相关搜索词
KubeBus深度学习PyTorch入门实战32TrainValTest交叉验证kerastutorialOpenShiftContainerPlatform4.13网络深度学习EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewIstioSecurityAssessmentDaprjuly2020securityauditreportCompression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩