pandas: powerful Python data analysis toolkit - 1.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [452]: ts.tz Out[452]:Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone 0 码力 | 3603 页 | 14.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [452]: ts.tz Out[452]:Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone 0 码力 | 3605 页 | 14.68 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [452]: ts.tz Out[452]:Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone 0 码力 | 3509 页 | 14.01 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.4.2in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [455]: ts.tz Out[455]:Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone to_list() Out[118]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')] Conversions Similarly to frequency conversion on a Series above, you can convert these indices to yield another 0 码力 | 3739 页 | 15.24 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.4.4in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [455]: ts.tz Out[455]:Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone to_list() Out[118]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')] Conversions Similarly to frequency conversion on a Series above, you can convert these indices to yield another 0 码力 | 3743 页 | 15.26 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.5.0rc0in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [455]: ts.tz Out[455]:Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone to_list() Out[118]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')] Conversions Similarly to frequency conversion on a Series above, you can convert these indices to yield another 0 码力 | 3943 页 | 15.73 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewtechniques like momentum to help the optimizer escape the local minimas. Sharpness-Aware Minimization (SAM)22 is one such technique. It suggests that steep valleys in the objective function might just be the local minima (right). Source: Forret et al. SAM encourages the optimizer to find a minima where the neighborhood of that minima has low loss too, by using the SAM loss. If we denote the weights of a model model by , and its loss function on a training dataset as . Then the SAM objective function is defined as: 23 https://en.wikipedia.org/wiki/Occam%27s_razor 22 Foret, Pierre, et al. "Sharpness-Aware Minimization0 码力 | 31 页 | 4.03 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [446]: ts.tz Out[446]:Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone 0 码力 | 3323 页 | 12.74 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [446]: ts.tz Out[446]:Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone 0 码力 | 3313 页 | 10.91 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.21.1Improved error handling during item assignment in pd.eval . . . . . . . . . . . . . 21 1.2.2.9 Dtype Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2.2.10 MultiIndex Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912 20.6.3 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 20.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 34.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 xxvi 34.2.30 码力 | 2207 页 | 8.59 MB | 1 年前3
共 108 条
- 1
- 2
- 3
- 4
- 5
- 6
- 11













