积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(108)VirtualBox(76)Pandas(28)云原生CNCF(2)Kubernetes(1)机器学习(1)

语言

全部英语(105)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(108)
 
本次搜索耗时 0.853 秒,为您找到相关结果约 108 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Pandas
  • 云原生CNCF
  • Kubernetes
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [452]: ts.tz Out[452]: Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [452]: ts.tz Out[452]: Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [452]: ts.tz Out[452]: Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.2

    in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [455]: ts.tz Out[455]: Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone to_list() Out[118]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')] Conversions Similarly to frequency conversion on a Series above, you can convert these indices to yield another
    0 码力 | 3739 页 | 15.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.4

    in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [455]: ts.tz Out[455]: Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone to_list() Out[118]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')] Conversions Similarly to frequency conversion on a Series above, you can convert these indices to yield another
    0 码力 | 3743 页 | 15.26 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.5.0rc0

    in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [455]: ts.tz Out[455]: Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone to_list() Out[118]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')] Conversions Similarly to frequency conversion on a Series above, you can convert these indices to yield another
    0 码力 | 3943 页 | 15.73 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    techniques like momentum to help the optimizer escape the local minimas. Sharpness-Aware Minimization (SAM)22 is one such technique. It suggests that steep valleys in the objective function might just be the local minima (right). Source: Forret et al. SAM encourages the optimizer to find a minima where the neighborhood of that minima has low loss too, by using the SAM loss. If we denote the weights of a model model by , and its loss function on a training dataset as . Then the SAM objective function is defined as: 23 https://en.wikipedia.org/wiki/Occam%27s_razor 22 Foret, Pierre, et al. "Sharpness-Aware Minimization
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.2.3

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [446]: ts.tz Out[446]: Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone
    0 码力 | 3323 页 | 12.74 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 3.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006 3.2.4 Top-level in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common In [446]: ts.tz Out[446]: Warning: Be wary of conversions between libraries. For some time zones, pytz and dateutil have different definitions of the zone
    0 码力 | 3313 页 | 10.91 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.21.1

    Improved error handling during item assignment in pd.eval . . . . . . . . . . . . . 21 1.2.2.9 Dtype Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2.2.10 MultiIndex Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912 20.6.3 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 20.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 34.2.3 Top-level conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 xxvi 34.2.3
    0 码力 | 2207 页 | 8.59 MB | 1 年前
    3
共 108 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 11
前往
页
相关搜索词
pandaspowerfulPythondataanalysistoolkit1.31.41.50rc0EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReview1.20.21
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩