积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(211)VirtualBox(113)Apache Kyuubi(44)Pandas(32)机器学习(12)dapr(3)rancher(2)Apache Flink(2)Kubernetes(1)Istio(1)

语言

全部英语(204)中文(简体)(7)

格式

全部PDF文档 PDF(189)其他文档 其他(22)
 
本次搜索耗时 0.495 秒,为您找到相关结果约 211 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • dapr
  • rancher
  • Apache Flink
  • Kubernetes
  • Istio
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    optimize for). Naturally, there is a trade-off between the two metrics. It is likely that higher quality models are deeper, hence will have a higher inference latency. Figure 1-4: Pareto Optimal Models In case we find models where we cannot get a better quality while holding the latency constant, or we cannot get better latency while holding quality constant, we call just models pareto-optimal, and the deeper, let’s visualize two sets of closely connected metrics that we care about. First, we have quality metrics like accuracy, precision, recall, F1, AUC, etc. Then we have footprint metrics like model
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    or do not necessarily care about the loss in quality. Figure 2-2: On the left is a high quality image of a cat. The cat on the right is a lower quality compressed image. Source Both the cat images for loss in quality. The JPEG and MP3 formats are able to achieve a 10-11x compression without any perceptible loss in quality. However, further compression might lead to degradation in quality. In our case prediction latency, RAM consumption and the quality metrics, such as accuracy, F1, precision and recall as shown in table 2-1. Footprint Metrics Quality Metrics ● Model Size ● Inference Latency on
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    couple of windows and a balcony. Similarly, to gain orders of magnitude in terms of footprint or quality, we should consider employing suitable efficient architectures. The progress of deep learning is temporal data. These breakthroughs contributed to bigger and bigger models. Although they improved the quality of the solutions, the bigger models posed deployment challenges. What good is a model that cannot since it is a binary classification task. An important caveat is that the model quality naturally depends on the quality of the embedding table. In the petting zoo example, we manually created the embeddings
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    recap, learning techniques can help us meet our model quality goals. Techniques like distillation and data augmentation improve the model quality, without increasing the footprint of the model (size, latency latency, etc). And as we have described earlier, some of these improved quality metrics can be traded off for a smaller footprint as desired. Continuing with the theme of chapter 3, we will start this natural language models like BERT. Self-Supervised learning helps models to quickly achieve impressive quality with a small number of labels. As we described in chapter 3’s ‘Learning Techniques and Efficiency’
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    you'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer employs a high quality model with a reasonable translation accuracy would garner better consumer support. In this chapter, our focus will be on the techniques that enable us to achieve our quality goals. High High quality models have an additional benefit in footprint constrained environments like mobile and edge devices where they provide the flexibility to trade off some quality for smaller footprints. In
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0

    matplotlib.pyplot as plt For this tutorial, air quality data about ??2 is used, made available by openaq and using the py-openaq package. The air_quality_no2.csv data set provides ??2 values for the measurement respectively Paris, Antwerp and London. In [3]: air_quality = pd.read_csv("data/air_quality_no2.csv", ...: index_col=0, parse_dates=True) ...: In [4]: air_quality.head() Out[4]: station_antwerp station_paris respectively. How to create plots in pandas? I want a quick visual check of the data. In [5]: air_quality.plot() Out[5]: With a DataFrame, pandas
    0 码力 | 3091 页 | 10.16 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.4

    matplotlib.pyplot as plt For this tutorial, air quality data about ??2 is used, made available by openaq and using the py-openaq package. The air_quality_no2.csv data set provides ??2 values for the measurement respectively Paris, Antwerp and London. In [3]: air_quality = pd.read_csv("data/air_quality_no2.csv", ...: index_col=0, parse_dates=True) ...: In [4]: air_quality.head() Out[4]: station_antwerp station_paris Release 1.0.4 How to create plots in pandas? I want a quick visual check of the data. In [5]: air_quality.plot() Out[5]: With a DataFrame, pandas
    0 码力 | 3081 页 | 10.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit -1.0.3

    matplotlib.pyplot as plt For this tutorial, air quality data about ??2 is used, made available by openaq and using the py-openaq package. The air_quality_no2.csv data set provides ??2 values for the measurement respectively Paris, Antwerp and London. In [3]: air_quality = pd.read_csv("data/air_quality_no2.csv", ...: index_col=0, parse_dates=True) ...: In [4]: air_quality.head() Out[4]: station_antwerp station_paris Release 1.0.3 How to create plots in pandas? I want a quick visual check of the data. In [5]: air_quality.plot() Out[5]: With a DataFrame, pandas
    0 码力 | 3071 页 | 10.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    matplotlib.pyplot as plt For this tutorial, air quality data about ??2 is used, made available by openaq and using the py-openaq package. The air_quality_no2.csv data set provides ??2 values for the measurement respectively Paris, Antwerp and London. In [3]: air_quality = pd.read_csv("data/air_quality_no2.csv", ...: index_col=0, parse_dates=True) ...: In [4]: air_quality.head() Out[4]: station_antwerp station_paris Release 1.1.1 How to create plots in pandas? I want a quick visual check of the data. In [5]: air_quality.plot() Out[5]: With a DataFrame, pandas
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    matplotlib.pyplot as plt For this tutorial, air quality data about ??2 is used, made available by openaq and using the py-openaq package. The air_quality_no2.csv data set provides ??2 values for the measurement respectively Paris, Antwerp and London. In [3]: air_quality = pd.read_csv("data/air_quality_no2.csv", ...: index_col=0, parse_dates=True) ...: In [4]: air_quality.head() Out[4]: station_antwerp station_paris Release 1.1.0 How to create plots in pandas? I want a quick visual check of the data. In [5]: air_quality.plot() Out[5]: With a DataFrame, pandas
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
共 211 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 22
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterIntroductionCompressionTechniquesArchitecturesAdvancedTechnicalReviewpandaspowerfulPythondataanalysistoolkit1.01.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩