积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(257)VirtualBox(113)Apache Kyuubi(44)Pandas(32)机器学习(23)OpenShift(7)Apache Karaf(6)Istio(5)Apache Flink(5)边缘计算(4)

语言

全部英语(227)中文(简体)(26)英语(2)中文(繁体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(233)其他文档 其他(24)
 
本次搜索耗时 0.070 秒,为您找到相关结果约 257 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • OpenShift
  • Apache Karaf
  • Istio
  • Apache Flink
  • 边缘计算
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    paper. This model script is available on GitHub. ‣ TransformerXL model: This transformer-based language model has a segment-level recurrence and a novel relative positional encoding. The enhancements Transformers (BERT) is a new method of pretraining language representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding paper. The NVIDIA BERT implementation is an optimized version of the Hugging Face implementation paper that leverages
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been upgraded to Qwen1.5. Both language models and multimodal data and post-trained on quality data for aligning to human preferences. Qwen is capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, apply_chat_template() to format your inputs as shown␣ �→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user"
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    chapter by presenting self-supervised learning which has been instrumental in the success of natural language models like BERT. Self-Supervised learning helps models to quickly achieve impressive quality with We will describe the general principles of Self-Supervised learning which are applicable to both language and vision. We will also demonstrate its efficacy through a colab. Finally, we introduce miscellaneous this works shortly. For now, let's assume that we have such a general model that works for natural language inputs. Then by definition the model should be able to encode the given text in a sequence of embeddings
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because sets up the modules, functions and variables that will be used later on. It initializes the Natural Language Toolkit (NLTK) and creates a text sequence from a sentence. from random import choice, randint of sentiment analysis, the transformation must preserve the original sentiment of the text. For a language translation model, the label sequence and the mutated input must have the same meaning. It is fair
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 3.2.28 Programming Guide and Reference

    service for PHP . . . . . . . . . . . . . . . . . . . . . . 22 3 Using the raw web service with any language 23 3.1 Raw web service example for Java with Axis . . . . . . . . . . . . . . . . . . . . 23 3 description file (in WSDL format), you can write client programs that call the web service in any language with a toolkit that understands WSDL. These days, that includes most programming languages that is a programming language with a toolkit that can parse WSDL and generate client wrapper code from it. We describe this further in chapter 3, Using the raw web service with any language, page 23, with samples
    0 码力 | 247 页 | 1.63 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 3.2.10 Programming Guide and Reference

    service for PHP . . . . . . . . . . . . . . . . . . . . . . 22 3 Using the raw web service with any language 23 3.1 Raw web service example for Java with Axis . . . . . . . . . . . . . . . . . . . . 23 3 description file (in WSDL format), you can write client programs that call the web service in any language with a toolkit that understands WSDL. These days, that includes most programming languages that is a programming language with a toolkit that can parse WSDL and generate client wrapper code from it. We describe this further in chapter 3, Using the raw web service with any language, page 23, with samples
    0 码力 | 247 页 | 1.62 MB | 1 年前
    3
  • pdf文档 AWS LAMBDA Tutorial

    used. You need not pay if the function is not executed. AWS Lambda 3 Multi Language Support AWS Lambda supports popular languages such as Node.js, Python, Java, C# and Go. These editor where you can write you code is as follows: You can write your code by choosing the language of your choice. You are allowed to choose the runtime again here. AWS Lambda list of languages and the different tools and IDE that can be used to write the Lambda function: Language Tools and IDE for Authoring Lambda Code NodeJS AWS Lambda Console Visual Studio IDE Java
    0 码力 | 393 页 | 13.45 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    beneficial? ??? Vasiliki Kalavri | Boston University 2020 • Use equivalence transformation rules if the language allows • selection operations are commutative • theta-join operations are commutative • natural Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 GET /dumprequest HTTP/1.1 Host: Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 GET /dumprequest HTTP/1.1 Host:
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 5.2.18 Programming Guide and Reference

    web service for PHP . . . . . . . . . . . . . . . . . 30 2.2 Using the raw web service with any language . . . . . . . . . . . . . . . . . . . 30 2.2.1 Raw web service example for Java with Axis . . description file (in WSDL format), you can write client programs that call the web service in any language with a toolkit that understands WSDL. These days, that includes most programming languages that a programming language with a toolkit that can parse WSDL and generate client wrapper code from it. We describe this further in chapter 2.2, Using the raw web service with any language, page 30, with
    0 码力 | 421 页 | 2.44 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 6.0.24 Programming Guide and Reference

    web service for PHP . . . . . . . . . . . . . . . . . 32 2.2 Using the raw web service with any language . . . . . . . . . . . . . . . . . . . 32 2.2.1 Raw web service example for Java with Axis . . description file (in WSDL format), you can write client programs that call the web service in any language with a toolkit that understands WSDL. These days, that includes most programming languages that a programming language with a toolkit that can parse WSDL and generate client wrapper code from it. We describe this further in chapter 2.2, Using the raw web service with any language, page 32, with
    0 码力 | 442 页 | 2.56 MB | 1 年前
    3
共 257 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 26
前往
页
相关搜索词
PyTorchReleaseNotesAI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewOracleVMVirtualBox3.228ProgrammingGuideandReference10AWSLAMBDATutorialStreamingoptimizationsCS591K1DataStreamProcessingAnalyticsSpring20205.2186.024
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩