积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(315)VirtualBox(85)OpenShift(74)Apache Kyuubi(44)Pandas(32)机器学习(24)Kubernetes(11)VMWare(9)Hadoop(6)云原生CNCF(6)

语言

全部英语(175)中文(简体)(134)中文(简体)(3)西班牙语(1)英语(1)

格式

全部PDF文档 PDF(292)其他文档 其他(22)DOC文档 DOC(1)
 
本次搜索耗时 0.137 秒,为您找到相关结果约 315 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • OpenShift
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • Kubernetes
  • VMWare
  • Hadoop
  • 云原生CNCF
  • 全部
  • 英语
  • 中文(简体)
  • 中文(简体)
  • 西班牙语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    Qwen Qwen Team 2024 年 05 月 11 日 快速开始 1 文档 3 i ii Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been ModelScope • Qwen1.5 Collection 加入社区,加入 Discord 和 微信群 。很期待见到你们! 快速开始 1 Qwen 2 快速开始 CHAPTER1 文档 1.1 安装 要快速上手 Qwen1.5,您可以从 Hugging Face 安装 transformers 库,并使用 Qwen1.5 Collection 中的模型。 我们建议您安装最新版本的 generate() 配合 tokenizer 中的 apply_chat_template() 方法。 如果你想使用 Flash Attention 2,你可以用下面这种方式读取模型: 4 Chapter 1. 文档 Qwen model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto"
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 石墨文档Go在K8S上微服务的实践-彭友顺

    石墨文档GO在K8S上微服务的实践 彭友顺 石墨文档 基础设施负责人 目 录 1 架构演进 01 2 微服务的生命周期 02 3 如何管理好微服务 03 架构演进 第一部分 架构演进 单体应用时期 垂直应用时期 微服务时期 快速、简单 耦合强 隔离、稳定 复制多 隔离、稳定 复用高 架构演进 组件增多 架构复杂 维护困难 架构演进 传统模式 K8S模式 统一采用gRPC协议和protobuf编解码 CI check 阶段 • 主要做 pb 的 format、lint、breaking 检查。 CI build 阶段 • 会基于 pb 的注释自动产生文档,并推送至内部的微服务管理系统接口平台中 • 会生成 Go/PHP/Node/Java 桩代码和错误码,推送到指定的仓库 开发阶段 • go get 客户端、服务端的gRPC和错误码的代码 配置 Is来判断根因。 • errors.Is(eerrors.FromError(err), UserErrNotFound()) 微服务的开发阶段 • protobuf lint的注释,利于阅读文档 • 调试gRPC,服务中注入reflection.Register的方法 • 通过K8S API,选择环境、应用、pod, 配置 对接 Debug • 配置驱动 • 配置补齐 • 配置工具
    0 码力 | 41 页 | 3.20 MB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    数据仓库:MaxCompute/ Hologres/分析 型数据库 NoSQL:云数据库 Hbase 版/表格存储 分析与报表 BI 工具 Notebook QuickBI PAI Notebook 组件 EMR Notebook 组件 数据作业编排 Oozie/Azkaban/Airflow Sqooq Dataworks Studio 组件 Dataworks 机器学习 PAI MaxCompute 内建支持的上百种机器学习算法,目前 MaxCompute 的机器学习能力由 PAI 产品进行统一提供 服务,同时 PAI 提供了深度学习框架、Notebook 开发 环境、GPU 计算资源、模型在线部署的弹性预测服务。 MaxCompute 的数据对 PAI 产品无缝集成。 存储 Pangu 阿里自研分布式存储服务,类似 HDFS。MaxCompute com/document_detail/57195.html?spm=a2c4g.11174283.6.579.3 3513a79ZnTEsX 6.4.1.2 下载和编译工具包 ⚫ MMA 官方文档地址: https://help.aliyun.com/document_detail/121023.htm?spm=a2o8d.corp_prod_req_list.0. 0.16d06b88pXRwqH
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    6.3 期望和方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.7 查阅文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738 16 附录:深度学习工具 741 16.1 使用Jupyter Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 xiv 16.1.1 在本地编辑和运行代码 运行和停止实例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749 16.2.4 更新Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749 16.3 使用Amazon EC2实例
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    见Jupyter notebook 代码 30 参考文献 1. https://scikit-learn.org/stable/tutorial/basic/tutorial.html ,scikit-learn (sklearn) 官方文档 2. https://sklearn.apachecn.org/ ,scikit-learn (sklearn) 官方 文档中文版 31 谢
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 此引发一切后果贡献者概不负责。 The main reason of organizing PDF version Keras: • 允许简单而快速的原型设计(由于用户友好,高度模块化,可扩展性)。 • 同时支持卷积神经网络和循环神经网络,以及两者的组合。 • 在 CPU 和 GPU 上无缝运行。 查看文档,请访问 Keras.io。 Keras 兼容的 Python 版本: Python 2.7-3.6。 1.2 指导原则 • 用户友好。Keras 是为人类而不是为机器设计的 API。它把用户体验放在首要和中心位置。 group。 • Keras Slack channel。使用 这个链接 向该频道请求邀请函。 你也可以在 Github issues 中张贴漏洞报告和新功能请求(仅限于此)。注意请先阅读规范 文档。 KERAS: 基于 PYTHON 的深度学习库 4 1.7 为什么取名为 Keras? Keras (κέρας) 在希腊语中意为 号角。它来自古希腊和拉丁文学中的一个文学形象,首先出 现于
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    0 PyTorch Release 22.08 PyTorch RN-08516-001_v23.07 | 93 ‣ Jupyter Core 4.6.1 ‣ Jupyter Notebook 6.0.3 ‣ JupyterLab 2.3.2, including Jupyter-TensorBoard ‣ JupyterLab Server 1.0.6 ‣ Jupyter-TensorBoard 0 PyTorch Release 22.07 PyTorch RN-08516-001_v23.07 | 100 ‣ Jupyter Core 4.6.1 ‣ Jupyter Notebook 6.0.3 ‣ JupyterLab 2.3.2, including Jupyter-TensorBoard ‣ JupyterLab Server 1.0.6 ‣ Jupyter-TensorBoard 0 PyTorch Release 22.06 PyTorch RN-08516-001_v23.07 | 107 ‣ Jupyter Core 4.6.1 ‣ Jupyter Notebook 6.0.3 ‣ JupyterLab 2.3.2, including Jupyter-TensorBoard ‣ JupyterLab Server 1.0.6 ‣ Jupyter-TensorBoard
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    on your computer • jupyter notebook • ???????????? Run on Princeton CS server • Pick any 4-digit number, say 1234 • ???????????? hostname -s • ???????????? jupyter notebook --no-browser --port=1234 • 1234:localhost:1234 __@__.cs.princeton.edu • First blank is username, second is hostname Jupyter Notebook VS Code • Install the Python extension. • ???????????? Install the Remote Development extension https://github.com/szagoruyko/pytorchviz References • Important References: • For setting up jupyter notebook on princeton ionic cluster • https://oncomputingwell.princeton.edu/2018/05/jupyter-on-the-cluster/
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    python module for demonstrating compression. The code for this exercise is available as a Jupyter notebook here. %%capture import gzip import operator, random import numpy as np import tensorflow as original segmentation project in chapter four. The code for this project is available as a Jupyter notebook here. def create_model_for_pruning(m, prunables, info=True): def apply_pruning_to_conv_blocks(block): clustering with a real example. The code for the next few exercises is available here as a Jupyter notebook. Using clustering to compress a 1-D tensor. Let us first implement the Within-Cluster-Sum-of-Squares
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    the Table Schema spec and that gives the possibility for a more interactive repr in the Jupyter Notebook, see here • Experimental support for exporting styled DataFrames (DataFrame.style) to Excel, see frontend like nteract using the Jupyter messaging protocol). This gives frontends like the Jupyter notebook and nteract more flexiblity in how they display pandas objects, since they have more information extension, see the example notebook (GH15649) • Styler.render() now accepts **kwargs to allow user-defined variables in the template (GH15649) • Compatibility with Jupyter notebook 5.0; MultiIndex column
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
共 315 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 32
前往
页
相关搜索词
AI模型千问qwen中文文档石墨GoK8S上微服务实践彭友顺Hadoop迁移阿里MaxCompute技术方案动手深度学习v2机器课程温州大学ScikitlearnKeras基于PythonPyTorchReleaseNotesTutorialEfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquespandaspowerfuldataanalysistoolkit0.20
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩