积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(324)VirtualBox(113)机器学习(63)Apache Kyuubi(44)Pandas(32)Kubernetes(16)OpenShift(13)Apache Flink(8)边缘计算(6)Istio(5)

语言

全部英语(251)中文(简体)(64)中文(繁体)(3)英语(3)中文(简体)(2)俄语(1)

格式

全部PDF文档 PDF(299)其他文档 其他(24)PPT文档 PPT(1)
 
本次搜索耗时 0.100 秒,为您找到相关结果约 324 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • 机器学习
  • Apache Kyuubi
  • Pandas
  • Kubernetes
  • OpenShift
  • Apache Flink
  • 边缘计算
  • Istio
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 中文(简体)
  • 俄语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Model and Operate Datacenter by Kubernetes at eBay (提交版)

    Model and Operate Datacenter by Kubernetes at eBay 辛肖刚, Cloud Engineering Manager, ebay 梅岑恺, Senior Operation Manager, ebay Agenda About ebay Our fleet Kubernetes makes magic at ebay Model + Controller Controller How we model our datacenter Operation in large scale Q&A About ebay 177M Active buyers worldwide $22.7B Amount of eBay Inc. GMV $2.6B Reported revenue 62% International revenue 1.1B Kubernetes Onboard Provision Configuration Kubernetes You need onboard something from nothing! Let’s model a datacenter running Kubernetes Onboard Provision Configuration Kubernetes After you define your
    0 码力 | 25 页 | 3.60 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Chapter 2 - Compression Techniques “I have made this longer than usual because I have not had time to make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep elaborate on one of those ideas, the compression techniques. Compression techniques aim to reduce the model footprint (size, latency, memory etc.). We can reduce the model footprint by reducing the number requires many trials and evaluations to reach a smaller model, if it is at all possible. Second, such an approach doesn’t generalize well because the model designs are subjective to the specific problem. In
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    Advanced Compression Techniques “The problem is that we attempt to solve the simplest questions cleverly, thereby rendering them unusually complex. One should seek the simple solution.” — Anton Pavlovich Pavlovich Chekhov In this chapter, we will discuss two advanced compression techniques. By ‘advanced’ we mean that these techniques are slightly more involved than quantization (as discussed in the second Can we optimally prune the network connections, remove extraneous nodes, etc. while retaining the model’s performance? In this chapter we introduce the intuition behind sparsity, different possible methods
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr

    The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr @markrussinovich Application models Describes the topology of your application and its components The way developers services and data stores Programming models Distributed Application Runtime (Dapr) Open Application Model (OAM) https://oam.dev State of Cloud Native Application Platforms Kubernetes for applications of concerns Application focused Application focused Container infrastructure Open Application Model Service Job Namespace Secret Volume Endpoint ConfigMap VolumeAttach CronJob Deployment
    0 码力 | 51 页 | 2.00 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient models & layers, infrastructure). Our hope learning algorithms help build models, which as the name suggests is an approximate mathematical model of what outputs correspond to a given input. To illustrate, when you visit Netflix’s homepage, the might be popular with other users too. If we train a model to predict the probability based on your behavior and currently trending content, the model will assign a high probability to Seinfeld. While there
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    in ANALOG magazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However, owing challenges. What good is a model that cannot be deployed in practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce model footprint and improve running on mobile and edge devices. We have also set up a couple of programming projects for a hands-on model optimization experience using these efficient layers and architectures. Let’s start our journey with
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Apache Karaf Decanter 2.x - Documentation

    location of the master # Default is localhost:6379 # #masterAddress=localhost:6379 # # For Sentinel model, define the name of the master # Default is myMaster # #masterName=myMaster # # For Cluster mode string to pass to the server when making requests # client.id # The compression type for all data generated by the producer # compression.type=none # The number of acknowledgments the producer requires the client on the Kafka broker. • the compression.type defines if the messages have to be compressed on the Kafka broker. Default value is none meaning no compression. • the acks defines the acknowledgement
    0 码力 | 64 页 | 812.01 KB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 7.0.0_BETA2 User Manual

    Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 13.3.1 The Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 13.3.2 Secure Configuration of Virtual that it is running on Apple hardware. Most DVDs that accompany Apple hardware check for the exact model. These restrictions are not circumvented by Oracle VM VirtualBox and continue to apply. • Only CPUs If you fill in all fields, on the other hand, the filter will only apply to a particular device model from a particular vendor, and not even to other devices of the same type with a different revision
    0 码力 | 519 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox UserManual.pdf

    ........................................................................ 508 13.3.1 The Security Model.................................................................................................. that it is running on Apple hardware. Most DVDs that accompany Apple hardware check for the exact model. These restrictions are not circumvented by Oracle VirtualBox and continue to apply. • Only CPUs that If you fill in all fields, on the other hand, the filter will only apply to a particular device model from a particular vendor, and not even to other devices of the same type with a different revision
    0 码力 | 1186 页 | 5.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25

    sqlite SciPy 0.19.0 Miscellaneous statistical functions XLsxWriter 0.9.8 Excel writing blosc Compression for msgpack fastparquet 0.2.1 Parquet reading / writing gcsfs 0.2.2 Google Cloud Storage access on linux xlrd 1.1.0 Excel reading xlwt 1.2.0 Excel writing xsel Clipboard I/O on linux zlib Compression for msgpack Optional dependencies for parsing HTML One of the following combinations of libraries ============================================================================== Dep. Variable: hr R-squared: 0.685 Model: OLS Adj. R-squared: 0.665 Method: Least Squares F-statistic: 34.28 Date: Sat, 02 Nov 2019 Prob
    0 码力 | 698 页 | 4.91 MB | 1 年前
    3
共 324 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 33
前往
页
相关搜索词
ModelandOperateDatacenterbyKubernetesateBay提交EfficientDeepLearningBookEDLChapterCompressionTechniquesAdvancedTheFutureofCloudNativeApplicationswithOpenApplicationOAMDaprIntroductionArchitecturesApacheKarafDecanterDocumentationOracleVMVirtualBox7.0BETA2UserManualUserManualpdfpandaspowerfulPythondataanalysistoolkit0.25
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩