积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(442)VirtualBox(113)机器学习(58)OpenShift(50)Apache Kyuubi(44)Kubernetes(38)Pandas(32)Istio(19)rancher(16)云原生CNCF(15)

语言

全部英语(274)中文(简体)(156)英语(5)中文(繁体)(4)西班牙语(1)中文(简体)(1)

格式

全部PDF文档 PDF(416)其他文档 其他(24)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 442 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • 机器学习
  • OpenShift
  • Apache Kyuubi
  • Kubernetes
  • Pandas
  • Istio
  • rancher
  • 云原生CNCF
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 西班牙语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    Chapter 7 - Automation "There's a lot of automation that can happen that isn't a replacement of humans but of mind-numbing behavior." - Stewart Butterfield, Founder (Slack) We have talked about a variety tensorflow.keras import layers, optimizers train_ds, val_ds, test_ds = tfds.load( 'oxford_flowers102', split=['train', 'validation', 'test'], as_supervised=True, read_config=tfds.ReadConfig(try_autocache=False) return image, label train_ds = train_ds.map(resize_image) val_ds = val_ds.map(resize_image) test_ds = test_ds.map(resize_image) Note that the create_model() function here has two additional parameters:
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Building resilient systems inside the mesh: abstraction and automation of Virtual Service generation

    #IstioCon Building resilient systems inside the mesh: abstraction and automation of Virtual Service generation Vladimir Georgiev, Thought Machine #IstioCon Sync calls failures inside the mesh
    0 码力 | 9 页 | 1.04 MB | 1 年前
    3
  • pdf文档 用户界面State of the UI_ Leveraging Kubernetes Dashboard and Shaping its Future

    State of the UI: Leveraging Kubernetes Dashboard and Shaping its Future Dan Romlein UX Designer, Google Spencer Sugarman UX Researcher, Google Talk Goals 1. What Dashboard is and why you should rd SIG-UI Team Piotr Bryk, Google Jeffrey Sica, University of Michigan Jim Angel, General Motors Sebastian Florek (co-lead), Loodse Marcin Maciaszczyk, Loodse Peng Xiao, Alauda Why a UI? 60% of survey takers use a UI to monitor or manage their resources in Kubernetes https://unsplash.com/ https://github.com/kubernetes/dashboard/issues /3256#issuecomment-437199403 UIs help you understand
    0 码力 | 41 页 | 5.09 MB | 1 年前
    3
  • pdf文档 Train-Val-Test-交叉验证

    Train-Val-Test划分 主讲人:龙良曲 Recap How to detect Splitting Train Set Test Set For example 60K 10K test while train train test trade-off Overfitt ing For others judge ▪ Kaggle Train Set Test Set Set Val Set Unavailable train-val-test K-fold cross-validation Train Set Test Set Val Set k-fold cross validation ▪ merge train/val sets ▪ randomly sample 1/k as val set 下一课时 减轻Overfitting Thank
    0 码力 | 13 页 | 1.10 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient models & layers, infrastructure). Our hope is that even if you just read this chapter case). For example, if you are deploying a model on devices where inference is constrained (such as mobile and embedded devices), or expensive (cloud servers), it might be worth paying attention to inference liable for data breaches. The law went into effect in 2018. Figure 1-5: Growth in the number of mobile and IoT devices over time. The lighter blue bars represent forecasts. (Data Source: 1, 2) In this
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Kubernetes日志平台建设最佳实践-元乙

    ����������� • ������������ • ������ • ���������� • ��Ingress�� • �����90%���Service�� • �����A/B Test • ��>10S �����Service��� ��������� • ���Service������B�� ����� A In A Ratio ID=1002 95 68% Structured, Unstructured & Semi- structured Data SQL�NoSQL Log Service / LogShipper Mobile & Web IoT Mobile Logs Web Text & Logs Services & Languages IoT & Devices Camera �� Log Service / ���� ������� �� •FUSE���� •All in DaemonSet ���� •����� •������ ��� •������ •������� Automation •����� •��ITOps�� ���� ���� ���� ����
    0 码力 | 30 页 | 53.00 MB | 1 年前
    3
  • pdf文档 SUSE Rancher and RKE Kubernetes cluster using CSI Driver on DELL EMC PowerFlex

    restore production workloads in Kubernetes environments and protects production and development, or test workloads to ensure that the data is easy to backup and restore. PowerProtect Data Manager enhances infrastructure platform and modernize your application architectures on your schedule. • Extensive automation for predictability and simpler workflows PowerFlex offers full-stack IT Operations Management Management (ITOM) and Life Cycle Management (LCM) with PowerFlex Manager. It provides extensive automation capabilities with PowerFlex Manager REST APIs and custom Ansible modules to integrate with your infrastructure
    0 码力 | 45 页 | 3.07 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    goals. High quality models have an additional benefit in footprint constrained environments like mobile and edge devices where they provide the flexibility to trade off some quality for smaller footprints others’. Let’s understand it with an example. Assume that we are working on a model for a home-automation device. Figure 3-4 shows the high level workflow of such a device. The model continuously classifies indicates the absence of an acceptable keyword in the input signal. Figure 3-4: Workflow of a home-automation device which detects three spoken words: hello weather and time. The output is none when none
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    even whole channels. Libraries like XNNPACK3,4 can help accelerate networks on a variety of web, mobile, and embedded devices, provided the user can design networks that match their constraints. One might val_loss: 0.5619 - val_accuracy: 0.8460 # Evaluate the pruned model on the test set. model_for_pruning_acc = model_for_pruning.evaluate(test_prep_ds.batch(256))[1] print('Accuracy: ', model_for_pruning_acc) Accuracy: 0.8471 Recall that the regular model performed with a 85.11% accuracy on the test set. Our pruned model performed with an accuracy of 84.71%. It's a slight drop in performance. Let's go ahead
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Kubernetes Native DevOps Practice

    Architecture and Features • CRD and operator design • Pipeline/Stage/Task/Task Template/Version Control/UI generation/Volume... • Logging, monitoring, autoscaling, high availability • Extensibility/Integration prompt innovation • New features of k8s may help enhance or improve DevOps • Help integration test - use sidecar container as dependent environment • Encapsulate API / SDK of other tools using image Architecture and Features • CRD and operator design • Pipeline/Stage/Task/Task Template/Version Control/UI generation/Volume... • Logging, monitoring, autoscaling, high availability • Extensibility/Integration
    0 码力 | 21 页 | 6.39 MB | 1 年前
    3
共 442 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 45
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomationBuildingresilientsystemsinsidethemeshabstractionandautomationofVirtualServicegeneration用户界面用户界面StateUILeveragingKubernetesDashboardShapingitsFuture深度学习PyTorch入门实战32TrainValTest交叉验证Introduction日志平台建设最佳实践SUSERancherRKEclusterusingCSIDriveronDELLEMCPowerFlexTechniquesAdvancedCompressionCNCFTenxCloudNativeDevOps
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩