积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(419)VirtualBox(113)机器学习(69)Apache Kyuubi(44)OpenShift(42)Kubernetes(32)Pandas(32)Apache Flink(19)rancher(9)RocketMQ(8)

语言

全部英语(279)中文(简体)(129)中文(简体)(4)中文(繁体)(3)英语(3)

格式

全部PDF文档 PDF(393)其他文档 其他(24)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.050 秒,为您找到相关结果约 419 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • 机器学习
  • Apache Kyuubi
  • OpenShift
  • Kubernetes
  • Pandas
  • Apache Flink
  • rancher
  • RocketMQ
  • 全部
  • 英语
  • 中文(简体)
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Model and Operate Datacenter by Kubernetes at eBay (提交版)

    Model and Operate Datacenter by Kubernetes at eBay 辛肖刚, Cloud Engineering Manager, ebay 梅岑恺, Senior Operation Manager, ebay Agenda About ebay Our fleet Kubernetes makes magic at ebay Model + Controller Controller How we model our datacenter Operation in large scale Q&A About ebay 177M Active buyers worldwide $22.7B Amount of eBay Inc. GMV $2.6B Reported revenue 62% International revenue 1.1B Kubernetes Onboard Provision Configuration Kubernetes You need onboard something from nothing! Let’s model a datacenter running Kubernetes Onboard Provision Configuration Kubernetes After you define your
    0 码力 | 25 页 | 3.60 MB | 1 年前
    3
  • pdf文档 The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr

    The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr @markrussinovich Application models Describes the topology of your application and its components The way developers services and data stores Programming models Distributed Application Runtime (Dapr) Open Application Model (OAM) https://oam.dev State of Cloud Native Application Platforms Kubernetes for applications of concerns Application focused Application focused Container infrastructure Open Application Model Service Job Namespace Secret Volume Endpoint ConfigMap VolumeAttach CronJob Deployment
    0 码力 | 51 页 | 2.00 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    multi-threaded data loaders, the default shared memory segment size with which the container runs might not be enough. Therefore, you should increase the shared memory size by issuing one of the following commands: commands: ‣ --ipc=host ‣ --shm-size=memory size> in the command line to docker run --gpus all To pull data and model descriptions from locations outside the container for use by PyTorch or (FP8) precision on Hopper GPUs which provides better training and inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    in ANALOG magazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However, owing challenges. What good is a model that cannot be deployed in practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce model footprint and improve running on mobile and edge devices. We have also set up a couple of programming projects for a hands-on model optimization experience using these efficient layers and architectures. Let’s start our journey with
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    Qwen Team 2024 年 05 月 11 日 快速开始 1 文档 3 i ii Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been upgraded AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") # Instead of using model.chat(), we directly use model.generate() # But you need to use tokenizer.apply_chat_template() to format your inputs
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    learning algorithms help build models, which as the name suggests is an approximate mathematical model of what outputs correspond to a given input. To illustrate, when you visit Netflix’s homepage, the might be popular with other users too. If we train a model to predict the probability based on your behavior and currently trending content, the model will assign a high probability to Seinfeld. While there the performance of the model scaled well with the number of labeled examples, since the network had a large number of parameters. Thus to extract the most out of the setup, the model needed a large number
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 BAETYL 1.0.0 Documentation

    baetyl-remote-mqtt service . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11 Image capturing and AI model inference with Video infer Service 81 11.1 Workflow . . . . . . . . . . . . . . . . . . . . . . In addition, Baetyl also isolates and limits the resources of containers, and allocates the CPU, memory and other resources of each running instance accurately to improve the efficiency of resource utilization Infinite, EasyEdge, TSDB, IoT Visualization) to provide data calcu- lation, storage, visible display, model training and many more abilities. • Service Deployment on Demand: Baetyl adopts containerization
    0 码力 | 145 页 | 9.31 MB | 1 年前
    3
  • epub文档 BAETYL 1.0.0 Documentation

    Message Synchronize between baetyl-hub and Baidu IoTHub via Remote Service Image capturing and AI model inference with Video infer Service Development How to write a python script for Python runtime How In addition, Baetyl also isolates and limits the resources of containers, and allocates the CPU, memory and other resources of each running instance accurately to improve the efficiency of resource utilization [https://cloud.baidu.com/product/iotviz.html]) to provide data calculation, storage, visible display, model training and many more abilities. Service Deployment on Demand: Baetyl adopts containerization and
    0 码力 | 135 页 | 15.44 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程 15.3 宝可梦数据集实战 15.4 迁移学习 15.5 Saved_model 15.6 模型部署 15.7 参考文献 预览版202112 人工智能绪论 我们需要的是一台可以从经验中学习的机器。 −阿兰·图灵 1.1 容器可以非常方便地搭建多层的网络。对于 3 层网络,我们可以通过快速 完成 3 层网络的搭建。 # 利用 Sequential 容器封装 3 个网络层,前网络层的输出默认作为下一层的输入 model = nn.Sequential( # 创建第一层,输入为 784,输出为 256 nn.Linear(28*28, 256), nn.ReLU(), # 激活函数 ) 第 1 层的输出节点数设计为 256,第 2 层设计为 128,输出层节点数设计为 10。直接调用 这个模型对象 model(x)就可以返回模型最后一层的输出?。 3.8.2 模型训练 搭建完成 3 层神经网络的对象后,给定输入?,调用 model(?)得到模型输出?后,通过 F.mse_loss 损失函数计算当前的误差ℒ: # 创建优化器,并传递需要优化的参数列表:[w1
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    entire stream in an accessible way • we have to process stream elements on-the-fly using limited memory 2 Vasiliki Kalavri | Boston University 2020 Properties of data streams • They arrive continuously single-pass Updates arbitrary append-only Update rates relatively low high, bursty Processing Model query-driven / pull-based data-driven / push-based Queries ad-hoc continuous Latency relatively University 2020 Time-Series Model: The jth update is (j, A[j]) and updates arrive in increasing order of j, i.e. we observe the entries of A by increasing index. This can model time-series data streams:
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
共 419 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 42
前往
页
相关搜索词
ModelandOperateDatacenterbyKubernetesateBay提交TheFutureofCloudNativeApplicationswithOpenApplicationOAMDaprPyTorchReleaseNotesEfficientDeepLearningBookEDLChapterArchitecturesAI模型千问qwen中文文档IntroductionBAETYL1.0Documentation深度学习StreamprocessingfundamentalsCS591K1DataProcessingAnalyticsSpring2020
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩