积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(351)VirtualBox(113)Apache Kyuubi(44)OpenShift(42)Pandas(32)机器学习(26)Kubernetes(21)Apache Flink(16)rancher(8)Hadoop(7)

语言

全部英语(254)中文(简体)(89)中文(简体)(3)英语(3)中文(繁体)(1)

格式

全部PDF文档 PDF(325)其他文档 其他(24)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.466 秒,为您找到相关结果约 351 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • OpenShift
  • Pandas
  • 机器学习
  • Kubernetes
  • Apache Flink
  • rancher
  • Hadoop
  • 全部
  • 英语
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Ozone meetup Nov 10, 2022 Ozone User Group Summit

    builds on top of the flat key-value store. © 2019 Cloudera, Inc. All rights reserved. 18 BUILDING BLOCKS Use proven technologies - don’t reinvent the wheel • RAFT replication – http://raft.github.io implementation of RAFT - Apache Ratis Library. • Storage Containers – Unit of replication (collection of blocks) ● RocksDB - container metadata • Supported by and battle-tested at Facebook. • OM – a namespace {Store Data Blocks In Containers} Container Container Storage Container Manager {Manage Containers, allocate blocks, certificates, datanodes} Container Container DataNodes {Store Data Blocks In Containers}
    0 码力 | 78 页 | 6.87 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    their respective _OPT variable. # There is no default; the JVM will autoscale based upon machine # memory size. # export HADOOP_HEAPSIZE_MAX= # The minimum amount of heap to use (Java -Xms). If no unit their respective _OPT variable. # There is no default; the JVM will autoscale based upon machine # memory size. # export HADOOP_HEAPSIZE_MIN= HADOOP_NAMENODE_OPTS=-Xmx102400m (2)查看 NameNode 占用内存 HOT hdfs storagepolicies -unsetStoragePolicy -path xxx (5)查看文件块的分布 bin/hdfs fsck xxx -files -blocks -locations (6)查看集群节点 hadoop dfsadmin -report 5.2.2 测试环境准备 1)测试环境描述 服务器规模:5 台 集群配置:副本数为
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    option io.hdf.dropna_table (GH4625) • pass thru store creation arguments; can be used to support in-memory stores 1.2.7 DataFrame repr Changes The HTML and plain text representations of DataFrame now show swapaxes,transpose,pop * __iter__,keys,__contains__,__len__,__neg__,__invert__ * convert_objects,as_blocks,as_matrix,values * __getstate__,__setstate__ (compat remains in frame/panel) * __getattr__,__setattr__ non-unique indexing in series via .ix/.loc and __getitem__ (GH4246) – Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280) • DataFrame.from_records did not accept empty recarrays
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    . . . . . . . . . . . . . . . . . . . 172 3 Frequently Asked Questions (FAQ) 175 3.1 DataFrame memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 3.2 PeriodIndex values for columns that contain NA values and have dtype object (GH8778). 1.1.3 Performance • Reduce memory usage when skiprows is an integer in read_csv (GH8681) • Performance boost for to_datetime conversions dtype that utilizes memory based on the level size. In prior versions, the memory usage was a constant 8 bytes per element in each level. In addition, in prior versions, the reported memory usage was incorrect
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15.1

    . . . . . . . . . . . . . . . . . . . 166 3 Frequently Asked Questions (FAQ) 169 3.1 DataFrame memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 3.2 PeriodIndex dtype that utilizes memory based on the level size. In prior versions, the memory usage was a constant 8 bytes per element in each level. In addition, in prior versions, the reported memory usage was incorrect incorrect as it didn’t show the usage for the memory occupied by the underling data array. (GH8456) In [26]: dfi = DataFrame(1,index=pd.MultiIndex.from_product([[’a’],range(1000)]),columns=[’A’]) previous
    0 码力 | 1557 页 | 9.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    database URI. You only need to create the engine once per database you are connecting to. For an in-memory sqlite database: 12 Chapter 1. What’s New pandas: powerful Python data analysis toolkit, Release sqlalchemy import create_engine # Create your connection. In [44]: engine = create_engine(’sqlite:///:memory:’) This engine can then be used to write or read data to/from this database: In [45]: df = pd.DataFrame({’A’: axis frequency (GH5955) • Bug in downcasting inference with empty arrays (GH6733) • Bug in obj.blocks on sparse containers dropping all but the last items of same for dtype (GH6748) • Bug in unpickling
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    . . . . . . . . . . . . . . . . . 238 i 4 Frequently Asked Questions (FAQ) 241 4.1 DataFrame memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 4.2 Byte-Ordering supports arithmetic with np.ndarray (GH10638) • Support pickling of Period objects (GH10439) • .as_blocks will now take a copy optional argument to return a copy of the data, default is to copy (no change presence of the HTTP Content-Encoding header in the response (GH8685) • Enable writing Excel files in memory using StringIO/BytesIO (GH7074) • Enable serialization of lists and dicts to strings in ExcelWriter
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Training Efficiency involves benchmarking the model training process in terms of computation cost, memory cost, amount of training data, and the training latency. It addresses questions like: ● How long the model take to train? ● How many devices are needed for the training? ● Can the model fit in memory? ● How much data would the model need to achieve the desired performance on the given task that go beyond just learning hyper-parameters, and instead search for efficient architectures (layers, blocks, end-to-end models) automatically. A simplistic architecture search could involve just learning the
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    bear, if we ever accidentally cross paths. We build an associative memory when about them over our lifetime. This associative memory helps us visualize the similarities or differences between a pair of model architecture of the downstream task. In essence, the embedding tables provide us a portable memory bank of knowledge about our domain of interest. This knowledge can be freely used by downstream tasks significant portion of the model size on disk and in memory. Although this comes with the cost of the table taking up significant disk space and memory, this issue can be a bottleneck if the model is going
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Dapr september 2023 security audit report

    issues covering multiple cases of similar issues across different components in the same Dapr building blocks. None of the issues were of critical or high severity. We found a vulnerability in a 3rd-party dependency not enabled by default. The vulnerability had the potential to crash a Dapr sidecar with an out-of-memory denial of service attack vector. We found the vulnerability a�er performing the threat modelling framework for building cloud-native applications. It consists of a runtime and a set of building blocks that allow users to move infrastructure-related tasks out of their applications into cloud infrastructure
    0 码力 | 47 页 | 1.05 MB | 1 年前
    3
共 351 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 36
前往
页
相关搜索词
OzonemeetupNov102022硅谷大数技术Hadoop生产调优手册pandaspowerfulPythondataanalysistoolkit0.130.150.140.17EfficientDeepLearningBookEDLChapterIntroductionArchitecturesDaprseptember2023securityauditreport
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩