积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(44)Pandas(32)OpenShift(6)Docker(2)Kubernetes(1)Hadoop(1)VirtualBox(1)Apache Karaf(1)

语言

全部英语(34)中文(简体)(10)

格式

全部PDF文档 PDF(44)
 
本次搜索耗时 0.821 秒,为您找到相关结果约 44 个.
  • 全部
  • 云计算&大数据
  • Pandas
  • OpenShift
  • Docker
  • Kubernetes
  • Hadoop
  • VirtualBox
  • Apache Karaf
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    DBMS_SCHEDULER 框架异步调用外部shell 脚本,然后由这个shell脚本提交一个Hadoop Map-Reduce 作业。该表函数与映射器 (mapper) 之 间使用 Oracle 高级队列特性进行通信。Hadoop mapper 将数据排入一个公共队列,而表函数则 从该队列中取出数据。由于该表函数能够并行运行,因此使用额外的逻辑来确保仅有一个服 务进程提交外部作业。 3 中存储的数据的一个模板实现。显然可能存在其他的甚至可能更好的实现。 下图是图 2 中原始示意图在技术上更准确、更具体的展示,解释了我们要在何处、如何使用 后文给出的部分实际代码: 图 3. 启动 Mapper 作业并检索数据 第 1 步是确定由谁作为查询协调器。对此我们采用一种将具有相同键值的记录写入表的简单 机制。首个插入胜出,作为此进程的查询协调器 (QC)。请注意,QC 表函数调用同时也承担 bash 脚本。这个 bash 脚本就是图 3 中的启动程 序 (launcher),它在 Hadoop 集群上启动 mapper 进程(第 3 步)。 5 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 mapper 进程处理数据,并在第 5 步写入一个队列。在本文的示例中,我们选择了一个在集群 范围内可用的队列。现在,我们
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
  • pdf文档 docker 原理与应用实践 -- 张成远

    jd.com docker 原理与应用实践 张成远 docker 原理与应用实践 Agenda • 容器系统整体架构 • Namespace • CGroup • Device Mapper • Pull Image • Start Container • Stop Container • Docker Image Storage 容器系统整体架构 Namespace 控制任务访问设备 • freezer— 挂起 / 恢复任务 Device Mapper • DM 框架为上层应用提供了丰富的设备映射及 IO 策 略方面的支持 • Docker 存储端实现之一使用 DM - thin provision • 上层通过 dmsetup 工具或 libdevmapper 库使用 Device Mapper Docker storage driver • Docker • dmsetup message /dev/mapper/pool 0 "create_thin 0" • dmsetup create thin --table "0 2097152 thin /dev/mapper/pool 0" • mkfs.ext4 /dev/mapper/thin • mount /dev/mapper/thin /export Docker storage
    0 码力 | 26 页 | 1.79 MB | 1 年前
    3
  • pdf文档 K8S安装部署开放服务

    centos lvdisplay mkfs.xfs -n ftype=1 /dev/mapper/centos-docker mkdir -p /var/lib/docker mount /dev/mapper/centos-docker /var/lib/docker echo "/dev/mapper/centos-docker /var/lib/docker xfs defaults defaults 0 0" >> /etc/fstab xfs_growfs /dev/mapper/centos-docker df –Th A2. 创建 k8s-node1, k8s-node2, k8s-node3 内存:16GB, 系统盘:40GB,docker 数据盘:40GB,ceph 数据盘:200GB 【注】所有节点(k8s-master, k8s-node1, k8s-node2 Step5. 关闭 swap 分区 swapoff -a && sysctl -w vm.swappiness=0 //设置 swap 开机不启动 vi /etc/fstab #/dev/mapper/centos-swap swap swap defaults 0 0 Step6. 配置 ulimt ulimit -SHn
    0 码力 | 54 页 | 1.23 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    DataFrame.rename() also supports an “axis-style” calling convention, where you specify a single mapper and the axis to apply that mapping to. In [242]: df.rename({'one': 'foo', 'two': 'bar'}, axis='columns') previous page groupby([by, axis, level, as_index, sort, ...]) Group DataFrame or Series using a mapper or by a Series of columns. gt(other[, level, fill_value, axis]) Greater than of series and other matching indices as other ob- ject. rename([index]) Alter Series index labels or name. rename_axis([mapper, index, columns, axis, . . . ]) Set the name of the axis for the index or columns. reorder_levels(order)
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    variables (GH23573, GH30959) • Series.map() now accepts collections.abc.Mapping subclasses as a mapper (GH29733) • Added an experimental attrs for storing global metadata about a dataset (GH29062) • 1 >>> df.rename(mapper={0: 1}, index={0: 2}) 0 2 1 pandas 1.0.0 >>> df.rename({0: 1}, index={0: 2}) Traceback (most recent call last): ... TypeError: Cannot specify both 'mapper' and any of 'index' 'index' or 'columns' >>> df.rename(mapper={0: 1}, index={0: 2}) Traceback (most recent call last): ... TypeError: Cannot specify both 'mapper' and any of 'index' or 'columns' You can still change the axis
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.0

    sparseness conversions); is a view groupby([by, axis, level, as_index, sort, ...]) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of matching indices to myself. rename([index]) Alter axes input function or functions. rename_axis(mapper[, axis, copy, inplace]) Alter index and / or columns using input function or functions. reorder_levels(order) level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of
    0 码力 | 1937 页 | 12.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.1

    sparseness conversions); is a view groupby([by, axis, level, as_index, sort, ...]) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of matching indices to myself. rename([index]) Alter axes input function or functions. rename_axis(mapper[, axis, copy, inplace]) Alter index and / or columns using input function or functions. reorder_levels(order) level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of
    0 码力 | 1943 页 | 12.06 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.2.3

    DataFrame.rename() also supports an “axis-style” calling convention, where you specify a single mapper and the axis to apply that mapping to. 200 Chapter 2. User Guide pandas: powerful Python data analysis 314 kind = inspect.Parameter.POSITIONAL_OR_KEYWORD /pandas/pandas/core/frame.py in rename(self, mapper, index, columns, axis, copy, ˓→inplace, level, errors) (continues on next page) 2.11. Duplicate 4439 4 3 6 4440 """ -> 4441 return super().rename( 4442 mapper=mapper, 4443 index=index, /pandas/pandas/core/generic.py in rename(self, mapper, index, columns, axis, copy, ˓→inplace, level, errors)
    0 码力 | 3323 页 | 12.74 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    DataFrame.rename() also supports an “axis-style” calling convention, where you specify a single mapper and the axis to apply that mapping to. 232 Chapter 2. User Guide pandas: powerful Python data analysis 326 kind = inspect.Parameter.POSITIONAL_OR_KEYWORD /pandas/pandas/core/frame.py in rename(self, mapper, index, columns, axis, copy, ˓→inplace, level, errors) (continues on next page) 2.11. Duplicate 5032 4 3 6 5033 """ -> 5034 return super().rename( 5035 mapper=mapper, 5036 index=index, /pandas/pandas/core/generic.py in rename(self, mapper, index, columns, axis, copy, ˓→inplace, level, errors)
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    DataFrame.rename() also supports an “axis-style” calling convention, where you specify a single mapper and the axis to apply that mapping to. In [247]: df.rename({"one": "foo", "two": "bar"}, axis="columns") /pandas/pandas/core/frame.py in rename(self, mapper, index, columns, axis, copy, inplace, ˓→ level, errors) 5037 4 3 6 5038 """ -> 5039 return super().rename( 5040 mapper=mapper, 5041 index=index, /pandas/pandas/core/generic /pandas/pandas/core/generic.py in rename(self, mapper, index, columns, axis, copy,␣ ˓→inplace, level, errors) 1162 return None 1163 else: -> 1164 return result.__finalize__(self, method="rename") 1165 1166
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
共 44 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
通过Oracle并行处理并行处理集成Hadoop数据docker原理应用实践张成K8S安装部署开放服务pandaspowerfulPythondataanalysistoolkit0.241.00.191.21.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩