 Experiment 6: K-MeansExperiment 6: K-Means November 27, 2018 1 Description In this exercise, you will use K-means to compress an image by reducing the number of colors it contains. To begin, download data6.zip and unpack RGB values of the 16 colors present in the image. In this exercise, you will use K-means to reduce the color count to k = 16. That is, you will compute 16 colors as the cluster centroids and replace each instead run K-means on the 128×128 image bird small.tiff. Once you have computed the cluster centroids on the small image, you will then use the 16 colors to replace the pixels in the large image. 3 K-means0 码力 | 3 页 | 605.46 KB | 1 年前3 Experiment 6: K-MeansExperiment 6: K-Means November 27, 2018 1 Description In this exercise, you will use K-means to compress an image by reducing the number of colors it contains. To begin, download data6.zip and unpack RGB values of the 16 colors present in the image. In this exercise, you will use K-means to reduce the color count to k = 16. That is, you will compute 16 colors as the cluster centroids and replace each instead run K-means on the 128×128 image bird small.tiff. Once you have computed the cluster centroids on the small image, you will then use the 16 colors to replace the pixels in the large image. 3 K-means0 码力 | 3 页 | 605.46 KB | 1 年前3
 Lecture 7: K-MeansLecture 7: K-Means Feng Li Shandong University fli@sdu.edu.cn December 28, 2021 Feng Li (SDU) K-Means December 28, 2021 1 / 46 Outline 1 Clustering 2 K-Means Method 3 K-Means Optimization Problem Problem 4 Kernel K-Means 5 Hierarchical Clustering Feng Li (SDU) K-Means December 28, 2021 2 / 46 Clustering Usually an unsupervised learning problem Given: N unlabeled examples {x1, · · · , xN}; no no. of desired partitions K Goal: Group the examples into K “homogeneous” partitions Loosely speaking, it is classification without ground truth labels A good clustering is one that achieves: High within-cluster0 码力 | 46 页 | 9.78 MB | 1 年前3 Lecture 7: K-MeansLecture 7: K-Means Feng Li Shandong University fli@sdu.edu.cn December 28, 2021 Feng Li (SDU) K-Means December 28, 2021 1 / 46 Outline 1 Clustering 2 K-Means Method 3 K-Means Optimization Problem Problem 4 Kernel K-Means 5 Hierarchical Clustering Feng Li (SDU) K-Means December 28, 2021 2 / 46 Clustering Usually an unsupervised learning problem Given: N unlabeled examples {x1, · · · , xN}; no no. of desired partitions K Goal: Group the examples into K “homogeneous” partitions Loosely speaking, it is classification without ground truth labels A good clustering is one that achieves: High within-cluster0 码力 | 46 页 | 9.78 MB | 1 年前3
 Apache Kafka with Istio on K8sSebastian Toader & Zsolt Varga 2021-Feb-26 Apache Kafka with Istio on K8s 2 • Scalability • Resiliency • Security • Observability • Disaster recovery Production grade Apache Kafka on Kubernetes certificate attached automatically by Istio Proxy sidecar container • Client certificate includes the K8s service account of the Kafka client application • SPIFE:// Apache Kafka with Istio on K8sSebastian Toader & Zsolt Varga 2021-Feb-26 Apache Kafka with Istio on K8s 2 • Scalability • Resiliency • Security • Observability • Disaster recovery Production grade Apache Kafka on Kubernetes certificate attached automatically by Istio Proxy sidecar container • Client certificate includes the K8s service account of the Kafka client application • SPIFE://- /ns/ - /sa/ 0 码力 | 14 页 | 875.99 KB | 1 年前3 K8S安装部署开放服务A. 准备主机/虚拟机 安装 k8s 集群需要至少 4 台主机/虚拟机,下面是参考配置: 1 台作为 k8s master CPU:2 核, 内存:8GB, 系统盘:40GB, docker 数据盘:80GB 3 台作为 k8s node CPU:2 核, 内存:16GB, 系统盘:40GB, docker 数据盘:40GB, ceph 数据盘:1TB *下面是 vSphere vSphere 上创建虚拟机的步骤: A1. 创建 k8s-master CPU:2 核, 内存:8GB,系统盘:40GB,docker 数据盘:80GB step1. 从模板上新建虚拟机 Step2. 配置虚拟机网络 打开虚拟机的控制台: 设置主机名: hostnamectl set-hostname k8s-master 设置网络: cd /etc/s /dev/mapper/centos-docker df –Th A2. 创建 k8s-node1, k8s-node2, k8s-node3 内存:16GB, 系统盘:40GB,docker 数据盘:40GB,ceph 数据盘:200GB 【注】所有节点(k8s-master, k8s-node1, k8s-node2, k8s-node3)均需做以下 B~D: B. 升级&配置 centos70 码力 | 54 页 | 1.23 MB | 1 年前3 K8S安装部署开放服务A. 准备主机/虚拟机 安装 k8s 集群需要至少 4 台主机/虚拟机,下面是参考配置: 1 台作为 k8s master CPU:2 核, 内存:8GB, 系统盘:40GB, docker 数据盘:80GB 3 台作为 k8s node CPU:2 核, 内存:16GB, 系统盘:40GB, docker 数据盘:40GB, ceph 数据盘:1TB *下面是 vSphere vSphere 上创建虚拟机的步骤: A1. 创建 k8s-master CPU:2 核, 内存:8GB,系统盘:40GB,docker 数据盘:80GB step1. 从模板上新建虚拟机 Step2. 配置虚拟机网络 打开虚拟机的控制台: 设置主机名: hostnamectl set-hostname k8s-master 设置网络: cd /etc/s /dev/mapper/centos-docker df –Th A2. 创建 k8s-node1, k8s-node2, k8s-node3 内存:16GB, 系统盘:40GB,docker 数据盘:40GB,ceph 数据盘:200GB 【注】所有节点(k8s-master, k8s-node1, k8s-node2, k8s-node3)均需做以下 B~D: B. 升级&配置 centos70 码力 | 54 页 | 1.23 MB | 1 年前3 Advancing the Tactical Edge with K3s and SUSE RGSTechnology | United States Product and Service K3s Advancing the Tactical Edge with K3s and SUSE RGS 2 www.susergs.com Advancing the Tactical Edge with K3s and SUSE RGS Introducing Booz Allen Hamilton give warfighters the information edge on the battlefield. Capitalizing on open source solutions like K3s, Booz Allen’s SmartEdge solution allows bat- talions to make real-time, data-driven decisions which and increase the probability of mission success. 3 www.susergs.com Advancing the Tactical Edge with K3s and SUSE RGS Working in collaboration with Brandon Gul- la, Tim Nicklas, Chris Nuber and the team0 码力 | 8 页 | 888.26 KB | 1 年前3 Advancing the Tactical Edge with K3s and SUSE RGSTechnology | United States Product and Service K3s Advancing the Tactical Edge with K3s and SUSE RGS 2 www.susergs.com Advancing the Tactical Edge with K3s and SUSE RGS Introducing Booz Allen Hamilton give warfighters the information edge on the battlefield. Capitalizing on open source solutions like K3s, Booz Allen’s SmartEdge solution allows bat- talions to make real-time, data-driven decisions which and increase the probability of mission success. 3 www.susergs.com Advancing the Tactical Edge with K3s and SUSE RGS Working in collaboration with Brandon Gul- la, Tim Nicklas, Chris Nuber and the team0 码力 | 8 页 | 888.26 KB | 1 年前3 k8s操作手册 2.3k8s操作手册 前言: 1.蓝色字体表示命令行命令,正式执行时不要复制前面的#号,#号只是提示应 该使用root权限操作 2.绿色字体表示注释,有时注释太多就不用绿色表示了 3.注意:本文档的所有操作请先在测环境进行实践,请不要直接在真实的服务 器中操作! 版权声明: 本文档以开源的形式发布,所有条款如下: (1)无担保:作者不保证文档内容的准确无误,亦不承担由于使用此文档所导致的任何后果 更新日期:2023-12-29 ★第0章、K8S集群搭建准备工作 相关单词原义: docker 码头工人 pod 集装箱 kubernetes 舵手,领航员 helm 舵轮,驾驶盘 chart 图表,海图 ①k8s对系统要求 linux内核在3.10及以上 ②规划主机名及ip k8s的服务器使用固定ip地址,配置主机名,要求能解析相应的主机名(master 结点)到对应的ip地址,可以使用内网集群的dns服务器或写入/etc/hosts文件 里。如: 主机名 ip地址 k8s-master1.cof-lee.com 10.99.1.51 k8s-master2.cof-lee.com 10.99.1.52 k8s-master3.cof-lee0 码力 | 126 页 | 4.33 MB | 1 年前3 k8s操作手册 2.3k8s操作手册 前言: 1.蓝色字体表示命令行命令,正式执行时不要复制前面的#号,#号只是提示应 该使用root权限操作 2.绿色字体表示注释,有时注释太多就不用绿色表示了 3.注意:本文档的所有操作请先在测环境进行实践,请不要直接在真实的服务 器中操作! 版权声明: 本文档以开源的形式发布,所有条款如下: (1)无担保:作者不保证文档内容的准确无误,亦不承担由于使用此文档所导致的任何后果 更新日期:2023-12-29 ★第0章、K8S集群搭建准备工作 相关单词原义: docker 码头工人 pod 集装箱 kubernetes 舵手,领航员 helm 舵轮,驾驶盘 chart 图表,海图 ①k8s对系统要求 linux内核在3.10及以上 ②规划主机名及ip k8s的服务器使用固定ip地址,配置主机名,要求能解析相应的主机名(master 结点)到对应的ip地址,可以使用内网集群的dns服务器或写入/etc/hosts文件 里。如: 主机名 ip地址 k8s-master1.cof-lee.com 10.99.1.51 k8s-master2.cof-lee.com 10.99.1.52 k8s-master3.cof-lee0 码力 | 126 页 | 4.33 MB | 1 年前3 K8s扩展功能解析0 码力 | 12 页 | 1.08 MB | 1 年前3 K8s扩展功能解析0 码力 | 12 页 | 1.08 MB | 1 年前3 涂小刚-基于k8s的微服务实践镜像编译 服务发布 镜像同步 镜像上传 镜像下载 镜像安全 k8s tcp负载 https-http 虚拟主机 服务路由 traefik ingress-nginx nginx 流 量 入 口 k8s平台组件 k8s平台接入流程 k8s环境空间和应用名规范 k8s-namespace k8s-service k8s-app-name app-name ai-test ai-dc-server ai-dc-api 业务线名称 ai dt ad 现有环境名 test preview prod 统一规划环境名和业务应用名,适配标准自动化运维。 业务线名称采用拼音首字母缩写 k8s-namespaces 环境名称定义采用业务线缩写名加环境名组成 k8s-service名称、app名称和应用名称包名保持一致 k8s-api配置对象 作用 k8s-namespace 通 通过配置文件关键字dev/test/prod等声明应用所属的环境,隔离不同环境业务,通过特定标识来识别业务线。 k8s-service k8s-dns注册服务名,通过配置文件关键字关联业务线应用名称,保持应用和k8s之间的关联。 k8s-app-name 容器host应用名称,deployment 名,通过配置文件关键字关联业务线应用名称,保持应用和k8s之间的关联。 规范 范例 应用名称 ai-dc-server0 码力 | 19 页 | 1.34 MB | 1 年前3 涂小刚-基于k8s的微服务实践镜像编译 服务发布 镜像同步 镜像上传 镜像下载 镜像安全 k8s tcp负载 https-http 虚拟主机 服务路由 traefik ingress-nginx nginx 流 量 入 口 k8s平台组件 k8s平台接入流程 k8s环境空间和应用名规范 k8s-namespace k8s-service k8s-app-name app-name ai-test ai-dc-server ai-dc-api 业务线名称 ai dt ad 现有环境名 test preview prod 统一规划环境名和业务应用名,适配标准自动化运维。 业务线名称采用拼音首字母缩写 k8s-namespaces 环境名称定义采用业务线缩写名加环境名组成 k8s-service名称、app名称和应用名称包名保持一致 k8s-api配置对象 作用 k8s-namespace 通 通过配置文件关键字dev/test/prod等声明应用所属的环境,隔离不同环境业务,通过特定标识来识别业务线。 k8s-service k8s-dns注册服务名,通过配置文件关键字关联业务线应用名称,保持应用和k8s之间的关联。 k8s-app-name 容器host应用名称,deployment 名,通过配置文件关键字关联业务线应用名称,保持应用和k8s之间的关联。 规范 范例 应用名称 ai-dc-server0 码力 | 19 页 | 1.34 MB | 1 年前3 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri vkalavri@bu.edu Spring 2020 4/16: Skew mitigation ??? Vasiliki Kalavri | uses two hash functions, H1 and H2 and checks the load of the two sampled workers: P(k) = arg mini(Li(t): H1(k)=i ∨ H2(k)=i) • provably reduces load variation exponentially as compared to the single choice0 码力 | 31 页 | 1.47 MB | 1 年前3 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri vkalavri@bu.edu Spring 2020 4/16: Skew mitigation ??? Vasiliki Kalavri | uses two hash functions, H1 and H2 and checks the load of the two sampled workers: P(k) = arg mini(Li(t): H1(k)=i ∨ H2(k)=i) • provably reduces load variation exponentially as compared to the single choice0 码力 | 31 页 | 1.47 MB | 1 年前3 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri vkalavri@bu.edu Spring 2020 2/25: State Management Vasiliki Kalavri | Boston University 2020 Logic State <k, v> <#Brexit Vasiliki Kalavri | Boston University 2020 • MapState[K, V]: a map of keys and values • get(key: K), put(key: K, value: V), contains(key: K), remove(key: K) • iterators over the contained entries, keys0 码力 | 24 页 | 914.13 KB | 1 年前3 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri vkalavri@bu.edu Spring 2020 2/25: State Management Vasiliki Kalavri | Boston University 2020 Logic State <k, v> <#Brexit Vasiliki Kalavri | Boston University 2020 • MapState[K, V]: a map of keys and values • get(key: K), put(key: K, value: V), contains(key: K), remove(key: K) • iterators over the contained entries, keys0 码力 | 24 页 | 914.13 KB | 1 年前3
共 566 条
- 1
- 2
- 3
- 4
- 5
- 6
- 57














 
  
 