Ozone meetup Nov 10, 2022 Ozone User Group Summit/ 51 Confidential—Restricted Nov 10, 2022 Ozone User Group Summit / 51 2 Confidential—Restricted / 51 THE HYBRID DATA COMPANY We believe that data can make what is impossible today, possible tomorrow SNAPSHOTS ● A single object - multiple versions ● A group of objects as a unit ○ Consistent with each other ○ Point in time, together as a group ● Examples : ○ Application updating multiple rows of of a table to get to a consistent state ○ Application updating a group of tables to move from one state to another ● Easy rollback for a DB/table to last App consistent view 38 © 2022 Cloudera, Inc.0 码力 | 78 页 | 6.87 MB | 1 年前3
Putting an Invisible Shield on Kubernetes SecretsKailun Qin, Ant Group Putting an Invisible Shield on Kubernetes Secrets Agenda • K8s Secrets: Overview • TEE-based K8s Secrets Protection: Solution • Production Experience @ Ant Group • Demo • Summary Introducing mutual (remote / local) attestations between entities Production Experience @ Ant Group KMS Plugin • Workflow • Encryption • Decryption • Engineering decisions • apiserver is responsible0 码力 | 33 页 | 20.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25Series, DataFrame, etc. automatically align the data for you in computations • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both ag- gregating and Grouping By group by we are referring to a process involving one or more of the following steps: • Splitting the data into groups based on some criteria • Applying a function to each group independently Tablewise Function Application: pipe() 2. Row or Column-wise Function Application: apply() 3. Aggregation API: agg() and transform() 4. Applying Elementwise Functions: applymap() Tablewise function application0 码力 | 698 页 | 4.91 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.2casting rules and indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 10 Group By: split-apply-combine 117 10.1 Splitting an object into groups . . . . . . . . . . . . . . . . groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 http://stackoverflow.com/questions/tagged/pandas Developer Mailing List: http://groups.google.com/group/pystatsmodels pandas is a Python package providing fast, flexible, and expressive data structures0 码力 | 283 页 | 1.45 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.1casting rules and indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 10 Group By: split-apply-combine 117 10.1 Splitting an object into groups . . . . . . . . . . . . . . . . groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 http://stackoverflow.com/questions/tagged/pandas Developer Mailing List: http://groups.google.com/group/pystatsmodels pandas is a Python package providing fast, flexible, and expressive data structures0 码力 | 281 页 | 1.45 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.3casting rules and indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10 Group By: split-apply-combine 125 10.1 Splitting an object into groups . . . . . . . . . . . . . . . . groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 http://stackoverflow.com/questions/tagged/pandas Developer Mailing List: http://groups.google.com/group/pystatsmodels pandas is a Python package providing fast, flexible, and expressive data structures0 码力 | 297 页 | 1.92 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.3functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766 2.18 Group by: split-apply-combine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781 2.18.3 Selecting a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 2.18.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . . convenient data handling functionalities similar to pandas. Learn more Already familiar to SELECT, GROUP BY, JOIN, etc.? Most of these SQL manipulations do have equivalents in pandas. Learn more The data0 码力 | 3603 页 | 14.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.4functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 2.18 Group by: split-apply-combine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 2.18.3 Selecting a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 2.18.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . . convenient data handling functionalities similar to pandas. Learn more Already familiar to SELECT, GROUP BY, JOIN, etc.? Most of these SQL manipulations do have equivalents in pandas. Learn more The data0 码力 | 3605 页 | 14.68 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 2.18 Group by: split-apply-combine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 2.18.3 Selecting a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 2.18.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . . convenient data handling functionalities similar to pandas. Learn more Already familiar to SELECT, GROUP BY, JOIN, etc.? Most of these SQL manipulations do have equivalents in pandas. Learn more The data0 码力 | 3509 页 | 14.01 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.4.2functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 2.18 Group by: split-apply-combine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787 2.18.3 Selecting a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788 2.18.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . . convenient data handling functionalities similar to pandas. Learn more Already familiar to SELECT, GROUP BY, JOIN, etc.? Most of these SQL manipulations do have equivalents in pandas. Learn more The data0 码力 | 3739 页 | 15.24 MB | 1 年前3
共 354 条
- 1
- 2
- 3
- 4
- 5
- 6
- 36













