积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(26)机器学习(18)VirtualBox(8)

语言

全部英语(17)中文(简体)(9)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.054 秒,为您找到相关结果约 26 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • VirtualBox
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    their giant counterparts. In the first chapter, we briefly introduced architectures like depthwise separable convolution, attention mechanism and the hashing trick. In this chapter, we will deepdive into their corresponding animal in the embedding table. ● Train the model: As we saw earlier the points are linearly separable. We can train a model with a single fully connected layer followed by a softmax activation, since provided a breakthrough for efficiently learning from sequential data, depthwise separable convolution extended the reach of convolution models to mobile and other devices with limited compute and memory resources
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    the training process: performance and convergence. Hyperparameters like number of filters in a convolution network or 1 Note that this search space is just choosing if we are applying the techniques. The manipulate the structure of a network. The number of dense units, number of convolution channels or the size of convolution kernels can sometimes be 4 Jaderberg, Max, et al. "Population based training a simple convolution network. Each timestep outputs a convolution layer parameter such as number of filters, filter height, filter width and other parameters required to describe a convolution layer. It
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None one, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None) 深度方向的可分离 2D 卷积。 可分离的卷积的操作包括,首先执行深度方向的空间卷积(分别作用于每个输入通道),紧 接一个将所得输 布尔值,该层是否使用偏置向量。 • depthwise_initializer: 运用到深度方向的核矩阵的初始化器 (详见 initializers)。 • pointwise_initializer: 运用到逐点核矩阵的初始化器 (详见 initializers)。 • bias_initializer: 偏置向量的初始化器 (详见 initializers)。 • depthwise_regularizer:
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    accuracy. This model script is available on GitHub and NGC. ‣ Mask R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. PyTorch Release 23.07 PyTorch accuracy. This model script is available on GitHub and NGC. ‣ Mask R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. The paper describing the model accuracy. This model script is available on GitHub and NGC. ‣ Mask R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. The paper describing the model
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    络、通信网络、蛋白质分子结构等一系列的不规则空间拓扑结构的数据,它们往往显得力 不从心。2016 年,Thomas Kipf 等人基于前人在一阶近似的谱卷积算法上提出了图卷积网 络(Graph Convolution Network,GCN)模型。GCN 算法实现简单,从空间一阶邻居信息聚 合的角度也能直观地理解,在半监督任务上取得了不错效果。随后,一系列的网络模型相 继被提出,如 GAT、EdgeConv、DeepGCN 和3 × 3感受 野大小。小卷积核使得网络提取特征时的感受野区域有限,但是增大感受野的区域又会增 加网络的参数量和计算代价,因此需要权衡设计。 空洞卷积(Dilated/Atrous Convolution)的提出较好地解决这个问题,空洞卷积在普通卷 积的感受野上增加一个 Dilation Rate 参数,用于控制感受野区域的采样步长,如下图 10.51 所示:当感受野的采样步长 Dilation 时,使用普通卷积方式进行运算;当 dilation 参数大于 1 时,采样空洞卷积方式进行计算。 10.11.2 转置卷积 转置卷积(Transposed Convolution,或 Fractionally Strided Convolution,部分资料也称 之为反卷积/Deconvolution,实际上反卷积在数学上定义为卷积的逆过程,但转置卷积并不 能恢复出原卷积的输入,因此称为反卷积并不妥当)通过在输入之间填充大量的
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ........................................................................................ 45 Convolution Layers ....................................................................................... ............................................................................ 71 12. Keras ― Convolution Neural Network ............................................................................... Keras neural networks are written in Python which makes things simpler.  Keras supports both convolution and recurrent networks. 1. Keras ― Introduction Keras 2  Deep learning
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 李东亮:云端图像技术的深度学习模型与应用

    Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block SACC2017 视觉感知模型-融合 分割 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block Forward Block Forward Forward Block deconvolution deconvolution 分割 convolution convolution 检测 识别 Single Frame Predictor SACC2017 视觉感知模型-融合 检测 识别 分割 跟踪 核 心 深度学习 •完全基于深度学习 •统一分类,检测,分割,跟踪 ü通过共享计算提高算法效率 ü通过多个相关任务共同学习提高算法性能
    0 码力 | 26 页 | 3.69 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    given a set of m training data {(x(i), y(i))}i=1,··· ,m, we first assume that they are linearly separable. Specifically, there exists a hyperplane (parameterized by ω and b) such that ωT x(i) + b ≥ 0 for features (“derived” from the old representation). As shown in Fig. 4 (b), data become linearly separable in the new higher-dimensional feature space (a) (b) Figure 4: Feature mapping for 1-dimensional apply the mapping x = {x1, x2} → z = {x2 1, √ 2x1x2, x2 2}, such that the data become linearly separable in the resulting 3-dimensional feature space. We now consider a general quadratic feature mapping
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    example now has two features (“derived” from the old representa- tion) Data now becomes linearly separable in the new representation Feng Li (SDU) SVM December 28, 2021 42 / 82 Feature Mapping (Contd.) example now has three features (“derived” from the old represen- tation) Data now becomes linearly separable in the new representation Feng Li (SDU) SVM December 28, 2021 44 / 82 Feature Mapping (Contd.) Soft-Margin SVM (Contd.) Recall that, for the separable case (training loss = 0), the constraints were y(i)(ωTx(i) + b) ≥ 1 for ∀i For the non-separable case, we relax the above constraints as: y(i)(ωTx(i)
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    matrix of size [5, 6]. This is because we have simply removed the first neuron. Now, consider a convolution layer with 3x3 sized filters and 3 input channels. At 1-D granularity, a vector of weights is pruned filters project consisted of thirteen convolution blocks and five deconvolution blocks. Our model achieved an accuracy of 85.11%. Here, we will prune the convolution blocks from block two (zero indexed) model for pruning. The prunable_blocks variable is the list of names of prunable convolution blocks. We prune all convolution blocks from second (zero indexed) onwards. The model variable refers to the pet
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesAutomationKeras基于Python深度学习PyTorchReleaseNotes深度学习kerastutorial李东亮云端图像技术模型应用LectureonSupportVectorMachineAdvancedCompressionTechniques
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩