OpenShift Container Platform 4.4 安装Operator 传递至运行的 OpenShift Container Platform 节点的 MachineConfig。 以下小节描述了您可能需要以这种方式在节点中配置的功能。 3.2.1. 添加 day-1 内核参数 虽然修改内核参数通常应做为第 2 天的任务,但您可能希望在初始集群安装过程中将内核参数添加到所有 master 节点或 worker 节点中。下面是一些您可能需要在集群安装过程中添加内核参数以在系统第一次引 内核模块 根据 OpenShift Container Platform 集群首次引导时是否必须存在内核模块,您可以通过以下两种方式之 一设置内核模块部署: 在集群安装 在集群安装时 时( (day-1)置 )置备 备内核模 内核模块 块:您可以通过一个 MachineConfig 创建内容,并通过包括 一组清单文件来将其提供给 openshift-install。 通 通过 过 Machine0 码力 | 40 页 | 468.04 KB | 1 年前3
OpenShift Container Platform 4.7 安装OpenShift Container Platform 的 Telemetry 访问 16.1.18. 后续步骤 第 第 17 章 章 安装配置 安装配置 17.1. 自定义节点 17.1.1. 添加 day-1 内核参数 17.1.2. 在节点中添加内核模块 17.1.2.1. 构建并测试内核模块容器 17.1.2.2. 为 OpenShift Container Platform 置备内核模块 --disk-container "file:///containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": bootstrap 节点,以便在 OpenShift Container Platform 集群初始化过程中使用。 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": 0 码力 | 2276 页 | 23.68 MB | 1 年前3
OpenShift Container Platform 4.8 安装--disk-container "file:///containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": --disk-container "file:// /containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": 虚拟机可能无法引导集群节点,这会阻止虚拟机使用 RHCOS 镜像置备节点。这 可能是因为以下原因: https://libvirt.org Main PID: 9850 (libvirtd) Tasks: 20 (limit: 32768) Memory: 74.8M CGroup: /system.slice/libvirtd.service ├─ 9850 /usr/sbin/libvirtd 0 码力 | 2586 页 | 27.37 MB | 1 年前3
OpenShift Container Platform 4.10 安装--disk-container "file:///containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": --disk-container "file:// /containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": --disk-container "file:// /containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": 0 码力 | 3142 页 | 33.42 MB | 1 年前3
OpenShift Container Platform 4.14 安装--disk-container "file:///containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": --disk-container "file:// /containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} OpenShift Container Platform 4.14 安装 安装 428 1 2 3 4 复制 SnapshotId --disk-container "file:// /containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": 0 码力 | 3881 页 | 39.03 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewperformance on a new task requires a large number of labels. 2. Compute Efficiency: Training for new tasks requires new models to be trained from scratch. For models that share the same domain, it is likely that the first few layers learn similar features. Hence training new models from scratch for these tasks is likely wasteful. Regarding the first limitation, we know that model quality can usually be naively expensive, and is unlikely to scale to the level that we want for complex tasks. To achieve a reasonable quality on non-trivial tasks, the amount of labeled data required is large too. For the second limitation0 码力 | 31 页 | 4.03 MB | 1 年前3
OpenShift Container Platform 4.13 安装--disk-container "file:///containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": --disk-container "file:// /containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": --disk-container "file:// /containers.json" 2 $ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION} { "ImportSnapshotTasks": [ { "Description": 0 码力 | 4634 页 | 43.96 MB | 1 年前3
PyTorch Release Notesrepresentations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding0 码力 | 365 页 | 2.94 MB | 1 年前3
Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020University 2020 • Flink requires a sufficient number of processing slots in order to execute all tasks of an application. • The JobManager cannot restart the application until enough slots become available JobManager failures ??? Vasiliki Kalavri | Boston University 2020 When the JobManager fails all tasks are automatically cancelled. The new JobManager performs the following steps: 1. It requests It requests processing slots. 3. It restarts the application and resets the state of all its tasks to the last completed checkpoint. Highly available Flink setup ??? Vasiliki Kalavri | Boston University0 码力 | 41 页 | 4.09 MB | 1 年前3
Apache Kyuubi 1.5.0 Documentationkyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-be1e- ˓→19770af8ac4c]: Stage 3 started with 1 tasks, 1 active stages running 2021-10-28 13:56:27.651 INFO scheduler.DAGScheduler: Job 3 finished: collect script can also help build external Spark into a Kyuubi image that acts as a client for submitting tasks by -s ${SPAAK_HOME}. Of course, if you have an image that contains the Spark binary package, you kyuubi-example -- /bin/bash ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://localhost:10009' Or you can submit tasks directly through local beeline: ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://${hostname}:${port}'0 码力 | 172 页 | 6.94 MB | 1 年前3
共 254 条
- 1
- 2
- 3
- 4
- 5
- 6
- 26













