积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(385)VirtualBox(113)Apache Kyuubi(44)OpenShift(37)机器学习(34)Pandas(32)Kubernetes(23)Apache Flink(23)Istio(20)rancher(11)

语言

全部英语(288)中文(简体)(88)英语(5)中文(简体)(3)中文(繁体)(1)

格式

全部PDF文档 PDF(359)其他文档 其他(24)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.314 秒,为您找到相关结果约 385 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • OpenShift
  • 机器学习
  • Pandas
  • Kubernetes
  • Apache Flink
  • Istio
  • rancher
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    vkalavri@bu.edu CS 591 K1: Data Stream Processing and Analytics Spring 2020 2/06: Notions of time and progress Vasiliki Kalavri | Boston University 2020 Mobile game application • input stream: Vasiliki Kalavri | Boston University 2020 • Processing time • the time of the local clock where an event is being processed • a processing-time window wouldn’t account for game activity while the train Event time • the time when an event actually happened • an event-time window would give you the extra life • results are deterministic and independent of the processing speed Notions of time 5 Vasiliki
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    Light Light Gray (Digital+Print) Light Gray (Digital+Print) Medium Gray (Digital+Print) Dark Gray (Digital+Print) #F6F6F6 R246, G246, B246 C00, M00, Y00, K04 Pantone Cool Grey 1 C #FFFFFF as the background color, and use Coding color—Dark Gray, Light Gray, Green, Yellow, and reference other PyTorch Brand colors to use. At the same time, please ensure the clarity and legibility of Green (Digital) Coding Text— Light Gray (Digital) Coding Text— Dark Gray (Digital) Coding Background— Dark (Digital) Coding Background— Light (Digital) Hex #2B7D6D Hex #F4A623
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    similar to the baseline, but does so in fewer epochs. We could ideally save an epoch’s worth of training time by terminating the training early, if we adopt this hypothetical sample efficient model training. effective utilization of the training data. Labeling data is often an expensive process both in terms of time consumption and fiscal expenditure because it involves human labelers looking at each example and the four classes, three of which are the keywords that the device will accept: hello, weather and time. The fourth class (none) indicates the absence of an acceptable keyword in the input signal. Figure
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 人工智能发展史

    toronto.edu/~fritz/absps/cvq.pdf probability distributions Meanwhile: Speech Sequence ▪ No Memory ▪ Time delay NN http://www.cs.toronto.edu/~fritz/absps/waibelTDNN.pdf Moving window ▪ Inspired LeCun Vector Machine: 1992 http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Dark time ▪ Paper got rejected ▪ Hinton moved to CIFAR seeking for funding ▪ Conspiracy: rebrand“neural
    0 码力 | 54 页 | 3.87 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    is, it relies on the momentum of the weights which is an exponentially smoothed estimate of over time. For instance, the momentum of weight at training step is given by: 2 Dettmers, Tim, and Luke Zettlemoyer scores, but they will all try to approximate the importance of a given weight at a certain point of time in the training process to minimize the loss function. The better we can estimate this importance granularities visually. Figure 5-4: An example of sparsified weight matrices (zero-d weights are dark) each with 33% sparsity at various granularity levels. It shows the parameter layout for a convolutional
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.13 网络

    iptables- min-sync-period array 刷新 iptables 规则前的最短持续时间。此字段确保刷 新的频率不会过于频繁。有效的后缀包括 s、m 和 h,具体参见 Go time 软件包。默认值为: 5.5.2. Cluster Network Operator 配置示例 以下示例中指定了完整的 CNO 配置: Cluster Network Operator 对象示例 以可读格式提供状态的原因。这个值是 TCPConnect、TCPConnectError、DNSResol ve、DNSError 之一。 success 布 布尔值 尔值 指明日志条目是否成功或失败。 time 字符串 字符串 连接检查的开始时间。 字段 字段 类 类型 型 描述 描述 12.4. 验证端点的网络连接 作为集群管理员,您可以验证端点的连接性,如 API 服务器、负载均衡器、服务或 Pod。 refused' reason: TCPConnectError success: false 第 第 12 章 章 验证 验证到端点的 到端点的连 连接 接 101 time: "2021-01-13T20:10:34Z" - latency: 2.582129ms message: 'kubernetes-apiserver-endpoint-ci-ln
    0 码力 | 697 页 | 7.55 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    算在内 cpu_time = timeit.timeit(cpu_run, number=3) gpu_time = timeit.timeit(gpu_run, number=3) print('warmup:', cpu_time, gpu_time) # 正式计算 10 次,取平均时间 cpu_time = timeit.timeit(cpu_run timeit(cpu_run, number=10) 预览版202112 第 1 章 人工智能绪论 16 gpu_time = timeit.timeit(gpu_run, number=10) print('run time:', cpu_time, gpu_time) 将不同大小?下的 CPU 和 GPU 环境的运算时间绘制为曲线,如图 1.21 所示。可以看 到,在矩阵?和矩阵 Fort Lauderdale, FL, USA, 2011. [3] J. Mizera-Pietraszko 和 P. Pichappan, Lecture Notes in Real-Time Intelligent Systems, Springer International Publishing, 2017.
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2.1.9 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Exponentially Weighted window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832 2.20 Time series / date functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836 2.20.2 Timestamps vs. time spans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837 2.20.3 Converting
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2.1.9 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Exponentially Weighted window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798 2.20 Time series / date functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 2.20.2 Timestamps vs. time spans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 2.20.3 Converting
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2.1.9 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Exponentially Weighted window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 2.20 Time series / date functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 2.20.2 Timestamps vs. time spans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836 2.20.3 Converting
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
共 385 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 39
前往
页
相关搜索词
NotionsoftimeandprogressCS591K1DataStreamProcessingAnalyticsSpring2020PyTorchBrandGuidelinesEfficientDeepLearningBookEDLChapterTechniques人工智能人工智能发展发展史AdvancedCompressionOpenShiftContainerPlatform4.13网络深度学习pandaspowerfulPythondataanalysistoolkit1.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩