积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(397)VirtualBox(113)OpenShift(62)Apache Kyuubi(44)Kubernetes(34)Pandas(32)机器学习(28)Istio(14)rancher(14)Apache Flink(12)

语言

全部英语(277)中文(简体)(110)中文(繁体)(3)英语(3)中文(简体)(2)西班牙语(1)俄语(1)

格式

全部PDF文档 PDF(370)其他文档 其他(24)PPT文档 PPT(2)DOC文档 DOC(1)
 
本次搜索耗时 0.810 秒,为您找到相关结果约 397 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • OpenShift
  • Apache Kyuubi
  • Kubernetes
  • Pandas
  • 机器学习
  • Istio
  • rancher
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 中文(简体)
  • 西班牙语
  • 俄语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    the word itself. Let’s discuss each step in detail. Step 1: Vocabulary Creation In this step, we create a vocabulary of the top words10 (ordered by frequency) from the given training corpus. We would ( ) is chosen, the dataset is preprocessed (lowercase, strip punctuation, normalization etc.) to create pairs of input context (neighboring words), and the label (masked word to be predicted). The word Step 1: Vocabulary Creation In this step, we will use a TextVectorization layer from Tensorflow to create a vocabulary of the most relevant words. It finds the top N words in a dataset, sorts them in the
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ........................................................................................... 63 Create a Multi-Layer Perceptron ANN ................................................................... creating neural networks. Keras is based on minimal structure that provides a clean and easy way to create deep learning models based on TensorFlow or Theano. Keras is designed to quickly define deep learning installation is quite easy. Follow below steps to properly install Keras on your system. Step 1: Create virtual environment Virtualenv is used to manage Python packages for different projects. This will
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool. • pandas is a dependency of statsmodels, making it an important part sql functions. To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For data analysis toolkit, Release 0.14.0 In [43]: from sqlalchemy import create_engine # Create your connection. In [44]: engine = create_engine(’sqlite:///:memory:’) This engine can then be used to write
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool. • pandas is a dependency of statsmodels, making it an important part arithmetic and comparisons (GH8813, GH5963, GH5436). • sql_schema now generates dialect appropriate CREATE TABLE statements (GH8697) • slice string method now takes step into account (GH8754) • Bug in BlockManager sql functions. To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15.1

    usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool. • pandas is a dependency of statsmodels, making it an important part powerful Python data analysis toolkit, Release 0.15.1 the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For For an in-memory sqlite database: In [43]: from sqlalchemy import create_engine # Create your connection. In [44]: engine = create_engine(’sqlite:///:memory:’) This engine can then be used to write
    0 码力 | 1557 页 | 9.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool. • pandas is a dependency of statsmodels, making it an important part argument must specified to True. Google BigQuery Enhancements • Added ability to automatically create a table/dataset using the pandas.io.gbq.to_gbq() function if the destination table/dataset does not df.B.cat.categories Out[4]: Index([u'c', u'a', u'b'], dtype='object') setting the index, will create create a CategoricalIndex In [5]: df2 = df.set_index('B') In [6]: df2.index Out[6]: CategoricalIndex([u'a'
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool. • pandas is a dependency of statsmodels, making it an important part is now in the API documentation, see the docs • json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067) • Added PySide support for the by select_column(key,column).unique() – min_itemsize parameter to append will now automatically create data_columns for passed keys 1.4.8 Enhancements • Improved performance of df.to_csv() by up to
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    transformations applied separately result in a dataset 3x the original size. Can we apply N transformations to create a dataset Nx the size? What are the constraining factors? An image transformation recomputes the import layers, optimizers, metrics DROPOUT_RATE = 0.2 LEARNING_RATE = 0.0002 NUM_CLASSES = 102 def create_model(): # Initialize the core model core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Create the full model with input, preprocessing, core and softmax layers. model = tf.keras.Sequential([ layers.Input([IMG_SIZE
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool. • pandas is a dependency of statsmodels, making it an important part by select_column(key,column).unique() – min_itemsize parameter to append will now automatically create data_columns for passed keys 1.2.8 Enhancements • Improved performance of df.to_csv() by up to time-series plots. • added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979) • added option display.chop_threshold to control display of small numerical
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    agnostic (it can play a similar role to a pip and virtualenv combination). Miniconda allows you to create a minimal self contained Python installation, and then use the Conda command to install additional running the Miniconda will do this for you. The installer can be found here The next step is to create a new conda environment. A conda environment is like a virtualenv that allows you to specify a specific set of libraries. Run the following commands from a terminal window: conda create -n name_of_my_env python This will create a minimal environment with only Python installed in it. To put your self inside
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
共 397 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 40
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitectureskerastutorialpandaspowerfulPythondataanalysistoolkit0.140.150.170.13Techniques0.121.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩