积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(286)VirtualBox(113)Apache Kyuubi(44)Pandas(32)OpenShift(26)Kubernetes(11)rancher(9)机器学习(9)Apache Flink(9)Istio(7)

语言

全部英语(227)中文(简体)(53)英语(3)中文(繁体)(2)中文(简体)(1)

格式

全部PDF文档 PDF(261)其他文档 其他(24)DOC文档 DOC(1)
 
本次搜索耗时 0.338 秒,为您找到相关结果约 286 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • OpenShift
  • Kubernetes
  • rancher
  • 机器学习
  • Apache Flink
  • Istio
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Rancher Kubernetes Engine 2, VMWare vSAN

    SAP SAP Data Intelligence 3 on Rancher Kubernetes Engine 2 using VMware vSAN and vSphere SUSE Linux Enterprise Server 15 SP4 Rancher Kubernetes Engine 2 SAP Data Intelligence 3 Dr. Ulrich Schairer, (SUSE) 1 SAP Data Intelligence 3 on Rancher Kubernetes Engine 2 using VMware vSAN and vSphere SAP Data Intelligence 3 on Rancher Kubernetes Engine 2 using VMware vSAN and vSphere Date: 2023-07-24 SAP possi- ble errors or the consequences thereof. 2 SAP Data Intelligence 3 on Rancher Kubernetes Engine 2 using VMware vSAN and vSphere Contents 1 Introduction 4 2 Requirements 5 3 Preparations 7
    0 码力 | 29 页 | 213.09 KB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    从FM到DeepFM rt 增加了10 倍怎么优化? 深度学习应用主要的挑战: 2.模型效果优 化困难 1.方案复杂  训练优化:  数据并行  模型并行  推理优化: Blade  推荐模型优化: 千亿特征 3. 工程优化 RingAllReduce + 层级级联 EasyVision 多机多卡性能对比 工程优化: 数据并行  M6模型  Transformer模型: RapidFormer性能 工程优化: 模型并行(Whale)  FP16 / Int8  模型剪枝  Op融合(Fusion Stitch)  MILR: Blade Disc 工程优化: Blade模型推理 Dynamic Shape Compiler for Machine Learning Workloads EmbeddingVariable [No Hash 病预测等) Infrastructure PAI平台(Platform of Artificial Intelligence) • 一键部署、弹性扩缩 • 多框架、多语言 • 推理优化Blade • 多维度监控+报警 • 自定义镜像 • 全托管+半托管 • 分布式训练优化 • 超大资源池 智能标注 可视化建模(Designer) 分布式训练(DLC) 在线服务(EAS)
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 [Buyers Guide_DRAFT_REVIEW_V3] Rancher 2.6, OpenShift, Tanzu, Anthos

    does not need Docker containers when used with distributions such as K3s and Rancher Kubernetes Engine 2 (RKE2). For installations that want an even smaller attack surface, SUSE Rancher can utilize an the hosted hyperscaler Kubernetes services. With RHACM, operators also get access to a policy engine via GitOps help manage clusters at scale. OpenShift clusters will also have full monitoring capabilities Additionally, SUSE Rancher-managed Amazon EKS, Microsoft AKS and Google GKE deployments support templating and CIS benchmark scanning to maintain high security and minimize configuration drift between
    0 码力 | 39 页 | 488.95 KB | 1 年前
    3
  • pdf文档 Istio Security Assessment

    attestation is desired, pilot-agent template generation should be revisited to ensure that all templating performs output encoding in a context-appropriate manner. Sidecar isolation is an important boundary
    0 码力 | 51 页 | 849.66 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.5.0rc0

    sion Notes SciPy 1.7.1 Miscellaneous statistical functions numba 0.53.1 Alternative execution engine for rolling operations (see Enhancing Perfor- mance) xarray 0.19.0 pandas-like API for N-dimensional 4.16 SQL support for databases other than sqlite psycopg2 2.8.6 PostgreSQL engine for sqlalchemy pymysql 1.0.2 MySQL engine for sqlalchemy Other data sources Dependency Minimum Version Notes PyTables ase.py:3794, in Index.get_loc(self, key, method,␣ ˓→tolerance) 3793 try: -> 3794 return self._engine.get_loc(casted_key) 3795 except KeyError as err: File /pandas/pandas/_libs/index.pyx:138, in pandas
    0 码力 | 3943 页 | 15.73 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    users should pay close attention to. 1.4.1 File parsing new features The delimited file parsing engine (the guts of read_csv and read_table) has been rewritten from the ground up and now uses a fraction both simple axis indexing and multi-level / hierarchical axis indexing • An integrated group by engine for aggregating and transforming data sets • Date range generation (date_range) and custom date can extract some data into a DataFrame. In the following example, we use the SQlite SQL database engine. You can use a temporary SQLite database where data are stored in “memory”. Just do: import sqlite3
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    users should pay close attention to. 1.6.1 File parsing new features The delimited file parsing engine (the guts of read_csv and read_table) has been rewritten from the ground up and now uses a fraction both simple axis indexing and multi-level / hierarchical axis indexing • An integrated group by engine for aggregating and transforming data sets • Date range generation (date_range) and custom date default Excel writer engine for ’xls’ files. Available options: ’xlwt’ (the default). io.excel.xlsm.writer: [default: openpyxl] [currently: openpyxl] : string The default Excel writer engine for ’xlsm’ files
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    specified with delim_whitespace=True in read_csv()/read_table() (GH6607) • Raise ValueError when engine=’c’ specified with unsupported options in read_csv()/read_table() (GH6607) • Raise ValueError when a SQLAlchemy engine to the sql functions. To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database Release 0.14.0 In [43]: from sqlalchemy import create_engine # Create your connection. In [44]: engine = create_engine(’sqlite:///:memory:’) This engine can then be used to write or read data to/from this
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.4

    sion Notes SciPy 1.4.1 Miscellaneous statistical functions numba 0.50.1 Alternative execution engine for rolling operations (see Enhancing Perfor- mance) xarray 0.15.1 pandas-like API for N-dimensional 4.0 SQL support for databases other than sqlite psycopg2 2.8.4 PostgreSQL engine for sqlalchemy pymysql 0.10.1 MySQL engine for sqlalchemy Other data sources Dependency Minimum Version Notes PyTables \t for read_table()] Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect
    0 码力 | 3743 页 | 15.26 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    default Text type for string columns: from sqlalchemy.types import String data.to_sql(’data_dtype’, engine, dtype={’Col_1’: String}) • Series.all and Series.any now support the level and skipna parameters read_sql_table and to_sql (GH7441, GH7952). For example: df.to_sql(’table’, engine, schema=’other_schema’) pd.read_sql_table(’table’, engine, schema=’other_schema’) • Added support for writing NaN values with now has a keyword parameter float_precision which specifies which floating-point converter the C engine should use during parsing, see here (GH8002, GH8044) • Added searchsorted method to Series objects
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
共 286 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 29
前往
页
相关搜索词
RancherKubernetesEngineVMWarevSAN阿里云上深度学习建模实践程孟力BuyersGuideDRAFTREVIEWV32.6OpenShiftTanzuAnthosIstioSecurityAssessmentpandaspowerfulPythondataanalysistoolkit1.50rc00.120.130.141.40.15
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩