积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(123)机器学习(59)OpenShift(28)Kubernetes(8)云原生CNCF(6)Service Mesh(6)Istio(4)RocketMQ(3)Apache APISIX(3)Hadoop(2)

语言

全部中文(简体)(118)英语(3)中文(简体)(2)

格式

全部PDF文档 PDF(123)
 
本次搜索耗时 0.071 秒,为您找到相关结果约 123 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • OpenShift
  • Kubernetes
  • 云原生CNCF
  • Service Mesh
  • Istio
  • RocketMQ
  • Apache APISIX
  • Hadoop
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习与PyTorch入门实战 - 18.1 激活函数梯度

    激活函数及其梯度 主讲人:龙良曲 Activation Functions Derivative Sigmoid / Logistic Derivative torch.sigmoid Tanh = 2??????? 2? − 1 Derivative torch.tanh Rectified Linear Unit Derivative F.relu 下一课时 Loss及其梯度
    0 码力 | 14 页 | 724.00 KB | 1 年前
    3
  • pdf文档 函数计算在双11小程序场景中的应用

    阿里云函数计算技术专家 函数计算在双11小程序场景中的应用 关注“阿里巴巴云原生”公众号 回复 1124 获取 PPT自我介绍 •吴天龙(花名: 木吴) •阿里云函数计算技术专家 •2013 年加入阿里云,参与分布式数据库, 对象存储等产品的开发。现任阿里云函数 计算架构师,聚焦于 Serverless 产品功 能和大规模资源伸缩调度、性能优化等系 统核心能力的研发。❖ 函数计算介绍 函数计算介绍 ❖ 双11小程序场景介绍 ❖ 技术挑战 ❖ Demo 目录函数计算-介绍 • 通用Serverless计算平 台 • 与云端事件源无缝集成 • 弹性伸缩,按量付费函数计算-介绍双11小程序场景介绍小程序场景的挑战 n 安全隔离 n 开发效率 n 大量的小程序是不活跃的 n 活动高峰期流量激增函数计算-冷启动优化 Download & Extract Code User 10ms~60000ms 预留实例 0ms 0ms函数计算-弹性伸缩 C1 C1 C2 C1 C2 时间 t1 t2函数计算-预留实例 • 预留实例:性能好 • 按量实例:按需使用函数计算-预留实例 预留实例 按量实例 效果 0 0 禁止调用 10 0 只使用预留实例,固定费用 0 10 只使用按量实例,按需付费 10 5 混合模式,兼顾性能和成本函数计算 DemoThank you !
    0 码力 | 13 页 | 6.95 MB | 6 月前
    3
  • pdf文档 常见函数梯度

    常见函数梯度 主讲人:龙良曲 Common Functions ?? + ? ??? + ?? ??? + ?? [? − (?? + ?)]? ?log(?? + ?) 下一课时 什么是激活函数 Thank You.
    0 码力 | 9 页 | 282.15 KB | 1 年前
    3
  • pdf文档 激活函数与GPU加速

    激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.
    0 码力 | 11 页 | 452.22 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    1 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112 7 7.6 链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 WGAN 原理 13.8 WGAN-GP 实战 13.9 参考文献 第 14 章 强化学习 14.1 先睹为快 14.2 强化学习问题 14.3 策略梯度方法 14.4 值函数方法 14.5 Actor-Critic 方法 14.6 小结 14.7 参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 . . . 4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ii 3.3.6 定义优化算法
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院)

    .................................................................36 云原生安全威胁分析与能力建设白皮书 3 2.6.6 针对函数供应链的攻击........................................................................36 三、典型攻击场景分析....... 服务开发商和拥有者带来了全新的安全挑战。路径 5 显示了攻击者利用 Serverless 存在的安全风险进行攻击的路径,可能存在的攻击手段包括:事件 注入攻击、敏感数据泄露攻击、身份认证攻击、权限滥用攻击、拒绝服务攻击和 针对函数供应链的攻击。 云原生安全威胁分析与能力建设白皮书 21 下面我们对威胁全景中攻击路径 1 至路径 5 的具体攻击手段,进行详细的 分析。 2.2 路径 1:镜像攻击 镜像是一个包含应用 储资源(例如进程数量、存储空间等),就可能导致宿主机或其他容器的拒绝服 务。 计算型 DoS 攻击:Fork Bomb 是一类典型的针对计算资源的拒绝服务攻击 手段,其可通过递归方式无限循环调用 fork()系统函数,从而快速创建大量进程。 由于宿主机操作系统内核支持的进程总数有限,如果某个容器遭到了 Fork Bomb 攻击,那么就有可能存在由于短时间内在该容器内创建过多进程而耗尽宿 主机进程资源的情况
    0 码力 | 72 页 | 2.44 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    的相同的栈式 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3.11 get_layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Model . . . . . . . . . . . . . . . . 133 7 损失函数 Losses 134 7.1 损失函数的使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2 可用损失函数 . . . . . . . . . . . . . . . . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    。 后一个模型的训练永远是在前一个模型的基础上完成! 12 Adaboost算法 算法思想 • 初始化训练样本的权值分布,每个样本具有相同权重; • 训练弱分类器,如果样本分类正确,则在构造下一个训练集中,它的权值 就会被降低;反之提高。用更新过的样本集去训练下一个分类器; • 将所有弱分类组合成强分类器,各个弱分类器的训练过程结束后,加大分 类误差率小的弱分类器的权重,降低分类误差率大的弱分类器的权重。 0 ? = 0 前向分步算法: ?? ? = ෍ ?=1 ? ?(?: ??) 初始化提升树 第?棵决策树 迭代?次,包 含?棵决策树 的提升树 真实值 损失函数 备注:损失函数选择:如分类用指数损失函数,回归使用平方误差损失。 GBDT算法 18 GBDT算法 ?0 ? ?1 ? ?2 ? ?3 ? ?4 ? ?0 ? ? ?: ?1 ? ?: ?3 82 GBDT算法 24 ? ?(?) ??(?) ?(?, ??(?)) 损失函数的负梯度在当 前模型的值作为提升树 的残差的近似值来拟合 回归树 GBDT算法 25 回归树的梯度提升算法: 输入:训练数据集? = ?1, ?1 , ?2, ?2 , … , ??, ?? ,损失函数L(?, ?(?)) 输出:提升树??(?) 1 初始化?0 ? = ??? min
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-时间序列总结

    结束时间戳表示 8 创建时间序列 Pandas中,时间戳使用Timestamp(Series派生的子 类)对象表示。 该对象与datetime具有高度的兼容性,可以直接通过 to_datetime()函数将datetime转换为TimeStamp对象。 pd.to_datetime('20180828') 9 创建时间序列 如果传入的是多个datetime组成的列表,则Pandas会 时间周期及计算 04 重采样 05 数据统计—滑动窗口 06 时序模型—ARIMA 19 创建固定频率的时间序列 Pandas中提供了一个date_range()函数,主要用 于生成一个具有固定频率的DatetimeIndex对象。 date_range(start = None, end = None, periods = None, freq = None freq:用来指定计时单位。 20 创建固定频率的时间序列 start、end、periods、freq这四个参数 至少要指定三个参数,否则会出现错误。 21 创建固定频率的时间序列 当调用date_range()函数创建DatetimeIndex对 象时,如果只是传入了开始日期(start参数)与 结束日期(end参数),则默认生成的时间戳是 按天计算的,即freq参数为D。 pd.date_range('2018/08/10'
    0 码力 | 67 页 | 1.30 MB | 1 年前
    3
共 123 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 13
前往
页
相关搜索词
深度学习PyTorch入门实战18.1激活函数梯度计算11程序场景应用17常见28GPU加速深度学习动手v2原生安全威胁分析能力建设白皮皮书白皮书来源中国国联联通中国联通研究研究院Keras基于Python机器课程温州大学08集成时间序列总结
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩