积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(156)OpenShift(49)机器学习(24)Kubernetes(23)Service Mesh(14)云原生CNCF(13)VMWare(7)Hadoop(7)RocketMQ(6)Istio(4)

语言

全部中文(简体)(148)英语(4)中文(简体)(3)

格式

全部PDF文档 PDF(155)DOC文档 DOC(1)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 156 个.
  • 全部
  • 云计算&大数据
  • OpenShift
  • 机器学习
  • Kubernetes
  • Service Mesh
  • 云原生CNCF
  • VMWare
  • Hadoop
  • RocketMQ
  • Istio
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Service Mesh 微服务架构设计

    Mesh 微服务架构设计 杨彪 美团点评高级架构师 2019.10.26 Service Mesh Meetup #7 成都站原蚂蚁金服专家,著有《分布式服务架构:原理、 设计与实战》和《可伸缩服务架构:框架与中间件》 两本书。有近10年互联网、游戏和支付相关的工作 经验,目前从事产业互联网。 杨彪,美团高级架构师1 漫谈服务架构的演进史 2 微服务架构设计的现状 3 Service Service Mesh微服务设计 4 Service Mesh的框架介绍1 漫谈服务架构的演进史 2 微服务架构设计的现状 3 Service Mesh微服务设计 4 Service Mesh的框架介绍我过往的经历情况 类型:传统互联网 模式:CS/BS模式 类型:互联网 模式:单体模式 类型:游戏 模式:单体模式 类型:互联网金融 模式:微服务模式Java版本演进史 JDK J2ME Function20年前春晚 20年后春晚 思考:为什么每年的春晚越来越无聊 其实不是春晚越来越不好,而是观众的需求越来越难满足,服务架构也如此。1 漫谈服务架构的演进史 2 微服务架构设计的现状 3 Service Mesh微服务设计 4 Service Mesh的框架介绍适应变化的微服务是什么样 微服务架构由一组小型的、独立自治的服务组成, 并且实现了业务中单个的完整业务功能。 • 服务和服务之间是独立的、低耦合的;
    0 码力 | 36 页 | 26.53 MB | 6 月前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》3-方案设计篇:如何设计可落地的AI解决方案

    方案设计篇:如何设计可落地的AI解决方案 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 行业背景:AI新零售是什么? • 用户需求:线下门店业绩如何提升? • 长期⽬目标:货架数字化与业务智能化 • 短期目标:自动化陈列审核和促销管理 • 方案设计:基于深度学习的检测/分类的AI流水线 • 方案交付:支持在线识别和API调用的 AI SaaS 目录 行业背景:AI新零售是什么 用户需求:线下门店业绩如何提升? 全球实体零售发展遭遇天花板 品牌间存量竞争 ——《C时代 新零售——阿里研究院新零售研究报告》 线上销售的广告位:直通车/钻展 线下门店的广告位:黄金位置 用好你的广告位:线上设计 用好你的广告位:线下陈列 缺货 凌乱 销量下降 用好你的广告位:线下陈列 有气势! 整齐! 销量上涨! 品牌线下PK 如何脱颖而出? 品牌商线下渠道销售的普遍需求 长期⽬目标:货架数字化与业务智能化 促销执行统计 客户需求:棚格图推荐设计与销量预测 如何落地项目第一期? 短期目标:自动化陈列审核和促销管理 业务落地基础:货架数字化 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 编号 业务落地:自动化陈列审核和促销管理 陈列 必分销 新品 纯度 排面 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 编号 销售执行三板斧:分销达标
    0 码力 | 49 页 | 12.50 MB | 1 年前
    3
  • pdf文档 高性能 Kubernetes 元数据存储 KubeBrain 的设计思路和落地效果-许辰

    本科和硕士毕业于北京大学计算机系  负责大规模 Kubernetes 系统的构建和优化  KubeBrain/ KubeGateway/ KubeZoo 等多个项目的发起人 • 背景介绍 • 设计思路 • 性能优化 • 落地效果 • 未来演进 背景 • Kubernetes 规模增大 10 倍以上  公司业务快速发展  存储、大数据、机器学习等场景云原生化 • 新场景对 Kubernetes apiserver 元信息存储 etcd etcd 存在的问题 自研元信息存储 调优 etcd 参数 按照对象拆分 etcd 设计新的元信息存储 … 如何解决存储瓶颈? KubeBrain 1. 大脑 2. 谐音科比 Kobe Bryant • 背景介绍 • 设计思路 • 性能优化 • 落地效果 • 未来演进 K8s 元信息存储的需求 (1)  读 • 单 Key 读,提供线性一致性 元信息存储的需求 • 背景介绍 • 设计思路 • 性能优化 • 落地效果 • 未来演进 性能优化 写优化 - 1 降低锁粒度 存储引擎替换 表锁 -> 行锁,增大了写的并发 写优化 - 2 单点写 -> 多点写 multi raft range 分片,增大写并发 Brain 层无磁盘 io,只有网络 io 写优化 - 3 事务优化 精心设计 key 格式 一个 k8s
    0 码力 | 60 页 | 8.02 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想

    基础理论篇:TensorFlow 2 设计思想 • TensorFlow 2 设计原则 • TensorFlow 2 核心模块 • TensorFlow 2 vs TensorFlow 1.x • TensorFlow 2 落地应用 目录 TensorFlow 2 设计原则 TensorFlow - Infra of AI TensorFlow 2 设计原则 TensorFlow 2
    0 码力 | 40 页 | 9.01 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 百度 阿⾥ ⽆量 问题: CV/NLP低频上线,常⽤的模型 压缩算法不适应推荐场景 思考: 线上服务 成本 训练任务 成本 内存是主要瓶颈 > Embedding table可以设计得更⼩么?Double Hashing Embedding Table与第⼀层fc可以看作低秩矩阵分解 亿 亿 512 512 9 9 原始矩阵 矩阵分解 压缩⼿段除了量化和稀疏化,还有什么?因式分解
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 24-云原生中间件之道-高磊

    函数检查行为方式 来阻止攻击,属于一种主动的态势感知和风险隔离技术手段 可以自动化的对非预计风险进行识别和风险隔离 对系统性能有一定影响 可信计算 核心目标是保证系统和应用的完整性,从而保证系统按照设计预期所规 定的安全状态。尤其是像边缘计算BOX这种安全防护,根据唯一Hash值验 证,可以实现极为简单的边云接入操作,运行态并不会影响性能。 可信根一般是一个硬件,比如CPU或者TPM,将从 它开始构建系统所有组件启动的可信启动链,比 对于数据存储的高性能、高稳定性、高拓展、资源成本 等等都需要同时满足(和传统CAP相悖) • 接入层需要能够根据规则的路由,以及兼容各类协议接 口以及数据模型,并能根据应用的规模来自动拓展。 • 实现HTAP(OLTP+OLAP),将在线事务|分析混合计算模型 基础上,实现多模数据模型,使得集成成本经一步降低。 • 计算层,与存储彻底剥离开来,实际是微服务化架构, 可以自由伸缩,并自动故障转移,采用读写分离,适应 用服务与底层存储进行衔接,其设计之初 即为 Kubernetes 生态所服务,对容器化应 用的适配非常友好。 高级能力-云原生中间件-应用的基石-MQ为例 云原生消息服务是云原生的通信基础设施 消息中间件在云原生的应用场景,主要是为微服务和EDA架构提供核心的解耦、异步和削峰的能力,在云原生体系 架构中消息服务还发挥着数据通道、事件驱动、集成与被集成等重要作用。云原生倡导面向性能设计,基于消息队 列的
    0 码力 | 22 页 | 4.39 MB | 6 月前
    3
  • pdf文档 OpenShift Container Platform 4.9 构建应用程序

    会自动检测每个拥有的资源上公开的绑定数据。 5.6.2. 数据模型 注释中使用的数据模型遵循特定的惯例。 服务绑定注解必须使用以下约定: 其中: 指定要公开的绑定值的名称。只有在将 objectType 参数设置为 Secret 或 ConfigMap 时, 才能将其排除。 指定没有设置 path 时公开的常量值。 数据模型详细介绍了 路径、elementType、objectType、sourceKey Deployment 对象,除非您需要 DeploymentConfig 对象 提供的特定功能或行为。 以下部分详细阐述两种对象之间的区别,以进一步协助您决定使用哪一种类型。 7.1.4.1. 设计 设计 Deployment 和 DeploymentConfig 对象之间的一个重要区别是为推出(rollout)过程所选择的 CAP theorem 属性。DeploymentConfig 对象以一致性为先,而 当忽略)。这有时被称为架构演进,而且是一个复杂的问题。 这可采用多种形式:数据存储在磁盘、数据库或临时缓存中,或作为用户浏览器会话的一部分。虽然大多 数 Web 应用程序都支持滚动部署,但务必要测试并设计您的应用程序以便能处理它。 在一些应用程序中,同时运行新旧代码的时间是短暂的,因此程序错误或一些用户事务失败是可以接受 的。至于其他应用程序,失败模式可能会导致整个应用程序无法运作。 验证 N-1
    0 码力 | 184 页 | 3.36 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。 机器学习界的青年才俊 何恺明,本科就读于清华大学,博士毕业于 香港中文大学多媒体实验室。2016年,加入 Facebook AI Research(FAIR)担任研究科 学家。 主要贡献:设计了ResNets 8 国内外知名人工智能企业榜单 编码 企业名称 人工智能技术 应用领域 广播 62 Python模块-Pandas ⚫Pandas Pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而 创建的。 Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型 数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的 函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分 析环境的重要因素之一。 63 68 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它 提供了许多的操作NumPy的数组的函数。 SciPy是一款方便、易于使用、专为科学和 工程设计的Python工具包,它包括了统计 、优化、整合以及线性代数模块、傅里叶 变换、信号和图像图例,常微分方差的求 解等 scipy.cluster 向量量化 scipy.constants 数学常量
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。 人工智能界的青年才俊 何恺明,本科就读于清华大学,博士毕业于 香港中文大学多媒体实验室。2016年,加入 Facebook AI Research(FAIR)担任研究科 学家。 主要贡献:设计了ResNets 8 国内外知名人工智能企业榜单 编码 企业名称 人工智能技术 应用领域 广播 63 Python模块-Pandas ⚫Pandas Pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而 创建的。 Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型 数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的 函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分 析环境的重要因素之一。 64 69 Python模块-SciPy ⚫SciPy SciPy是构建在NumPy的基础之上的,它 提供了许多的操作NumPy的数组的函数。 SciPy是一款方便、易于使用、专为科学和 工程设计的Python工具包,它包括了统计 、优化、整合以及线性代数模块、傅里叶 变换、信号和图像图例,常微分方差的求 解等 scipy.cluster 向量量化 scipy.constants 数学常量
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.10 构建应用程序

    会自动检测每个拥有的资源上公开的绑定数据。 6.6.2. 数据模型 注释中使用的数据模型遵循特定的惯例。 服务绑定注解必须使用以下约定: 其中: 指定要公开的绑定值的名称。只有在将 objectType 参数设置为 Secret 或 ConfigMap 时, 才能将其排除。 指定没有设置 path 时公开的常量值。 数据模型详细介绍了 路径 路径、elementType Deployment 对象,除非您需要 DeploymentConfig 对象 提供的特定功能或行为。 以下部分详细阐述两种对象之间的区别,以进一步协助您决定使用哪一种类型。 8.1.4.1. 设计 设计 Deployment 和 DeploymentConfig 对象之间的一个重要区别是为推出(rollout)过程所选择的 CAP theorem 属性。DeploymentConfig 对象以一致性为先,而 当忽略)。这有时被称为架构演进,而且是一个复杂的问题。 这可采用多种形式:数据存储在磁盘、数据库或临时缓存中,或作为用户浏览器会话的一部分。虽然大多 数 Web 应用程序都支持滚动部署,但务必要测试并设计您的应用程序以便能处理它。 在一些应用程序中,同时运行新旧代码的时间是短暂的,因此程序错误或一些用户事务失败是可以接受 $ oc set deployment-hook dc/frontend \
    0 码力 | 198 页 | 3.62 MB | 1 年前
    3
共 156 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 16
前往
页
相关搜索词
ServiceMesh服务架构构设设计架构设计TensorFlow快速入门实战方案方案设计如何落地AI解决解决方案高性性能高性能Kubernetes数据存储KubeBrain思路效果许辰基础理论基础理论思想推荐模型特点大规规模大规模深度学习系统24原生中间中间件之道高磊OpenShiftContainerPlatform4.9构建应用程序应用程序机器课程温州大学01引言4.10
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩