积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(224)机器学习(65)OpenShift(42)Kubernetes(41)Service Mesh(19)云原生CNCF(18)Hadoop(11)Istio(7)RocketMQ(6)Apache APISIX(4)

语言

全部中文(简体)(204)英语(8)中文(繁体)(5)中文(简体)(5)西班牙语(1)

格式

全部PDF文档 PDF(222)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 224 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • OpenShift
  • Kubernetes
  • Service Mesh
  • 云原生CNCF
  • Hadoop
  • Istio
  • RocketMQ
  • Apache APISIX
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    AI agent, etc. 最新版本 Qwen1.5 有以下特点: • 6 种模型规模,包括 0.5B、1.8B、4B、7B、14B 和 72B; • 针对每种尺寸提供基础模型和 Chat 模型,并确保聊天模型按照人类偏好进行校准; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 快速开始 CHAPTER1 文档 1.1 安装 要快速上手 Qwen1.5,您可以从 Hugging Face 安装 transformers 库,并使用 Qwen1.5 Collection 中的模型。 我们建议您安装最新版本的 transformers 库,或者至少安装 4.37.0 版本。 1.1.1 Pip 安装 pip install transformers -U 1.1.2 Conda Transformers & ModelScope 要快速上手 Qwen1.5,我们建议您首先尝试使用 transformers 进行推理。请确保已安装了 transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from transformers import AutoModelForCausalLM
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 阿里云容器服务大促备战

    李斌 阿里云容器服务 全民双十一 基于容器服务的大促备战 关注“阿里巴巴云原生”公众号 回复 1124 获取 PPT我是谁挑战在哪里? 极限并发 人为失误 系统瓶颈 雪崩 单点失效 成本控制 用户体验 最终一致性 稳定性 资源不足 资源利用率 安全风险备战工具箱 服务化 开发运维一体化 弹性 极致性能 高可用 全站上云 安全加固 人工智能 大数据 Elasti c Search Tensor Flow Spark Flink Redis Zoo keeper云原生实时计算与人工智能@微博 2.4倍性能提升 百亿实时样本 万亿维度模型云原生基础设施 新生态 新算力 新基石 全球化部署 单集群万节点规模 云边端一体化 延时降低75% 混合云2.0架构 交付效率提升3倍 全链路安全架构 实时风险监测、告警、阻断
    0 码力 | 17 页 | 17.74 MB | 6 月前
    3
  • pdf文档 机器学习课程-温州大学-11深度学习-序列模型

    2023年05月 深度学习-序列模型 黄海广 副教授 2 03 长短期记忆(LSTM) 04 双向循环神经网络 本章目录 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 3 03 长短期记忆(LSTM) 04 双向循环神经网络 1.序列模型概述 01 序列模型概述 02 循环神经网络(RNN) 循环神经网络(RNN) 05 深层循环神经网络 4 1.序列模型概述 循环神经网络(RNN)之类的模型在语音识别、自然语言处理和 其他领域中引起变革。 5 数学符号 在这里?<1>表示Harry这个单词,它就是一个第 4075行是1,其余值都是0的向量(上图编号1所示 ),因为那是Harry在这个词典里的位置。 ?<2>是第6830行是1,其余位置都是0的向量(上 图编号2所示)。 同一层节点之间无关联,从而导致获取时序规则方面功 能不足  循环神经网络可以解决时序问题  基于语言模型(LM),故可以捕捉时序规则信息  它是如何实现的? 7 03 长短期记忆(LSTM) 04 双向循环神经网络 2.循环神经网络(RNN) 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 8 2.循环神经网络(RNN)
    0 码力 | 29 页 | 1.68 MB | 1 年前
    3
  • pdf文档 李东亮:云端图像技术的深度学习模型与应用

    云端图像技术的深度学习模型与应用 李东亮 360 人工智能研究院 lidongliang@360.cn 2017.10.20 SACC2017 360电脑安全产品 月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额 移动端 业 务 视觉感知模型 SACC2017 视觉感知核心问题 Object Segmentation Object Classification Person, Horse, Barrier, Table, etc Object Detection 检测 识别 分割 跟踪 核 心 SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained, real-time Cloud processing SACC2017 视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward
    0 码力 | 26 页 | 3.69 MB | 1 年前
    3
  • pdf文档 运维上海2017-机器学习模型训练的Kubernetes实践-袁晓沛

    0 码力 | 39 页 | 5.82 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    扫码试看/订阅 《TensorFlow 2 项目进阶实战》视频课程 快速上手篇:动⼿训练模型和部署服务 • TensorFlow 2 开发环境搭建 • 使用 tf.keras.datasets 加载数据 • 使用 tf.data.Dataset 加载数据 • 使用 tf.keras.Model 管理模型 • Fashion MNIST 数据集介绍 • 使用 TensorFlow 2 训练分类网络 from_generator 加载 Generator 使用 tf.data.TextLineDataset 加载文本 “Hello TensorFlow” Try it! 使用 tf.keras.Model 管理模型 历史上的 tf.keras.Model • Class tf.compat.v1.keras.Model • Class tf.compat.v1.keras.models.Model • Model • Class tf.keras.models.Model 使用 tf.keras.Model 构建模型 使用 tf.keras.Model 构建模型 使用 tf.keras.Model 训练模型 保存和加载 h5 模型 保存和加载 SavedModel 模型 Fashion MNIST 数据集介绍 Original MNIST dataset The MNIST database
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    从推荐模型的基础特点看
 袁镱 腾讯 个⼈简介 � ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, , 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 预测 请求 数据 落地 ⽆量 ⽤户⾏为数据上报 特征 库 内容 获取 请求 � 推荐场景的重要性 � PCG的图⽂,视频推荐(腾讯视频,腾讯新 闻,QQ看点,浏览器,微视, QQ⼩世界等) � 腾讯系内容推荐:阅⽂集团,QQ⾳乐 � Facebook推荐场景推理成本占AI推理成本的 >72% [ISCA2020 RecNMP]
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊

    如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 定位为基于物模型的计算 定位为基于业务的计算 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-2 • 为了更好的为客户业 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 是未来下一代云,目前云厂商还在摸索阶段 • 有望成为云计算终极形式,云原生ServiceMesh以及 OAM等会得到更广阔空间的提升和发展。 2020年,全球数据存储总量预计为58ZB,平均每年增长 1倍。当前数据爆炸时代带来了三大问题。一、储存成 本问题: 通过当前的中心化云计算处理和存储海量新 增数据费用高昂;二、隐私和安全问题: 当前的中心 化云计算无法保证个人数据的隐私和安全性;三、数字 资产流动性问题: 数据是一种资产,互联网巨头数据 但是通过监控、日志分析、跟踪链等发 现问题根因所在周期长,依靠人的经验 (并且人的经验无法数据化沉淀),而 得到问题根因后,只能通过人工去修复 或者管理 • 而大数据或者基于监督的AI技术的成熟、 运维领域模型趋于完整、云原生底座也 更成熟的基础上,利用大数据分析根因 (关联性分析)和利用AI进行基于根因分 析的自动化处理成为可能。 • 在精细化的基础上,完整较为成熟的自 动化能力,节约了人力成本同时提高了
    0 码力 | 20 页 | 5.17 MB | 6 月前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 3.工程优化复 杂 4.数据获取困 难 挑战 深度模型是非线性的: • 参数很多 • 参数敏感 • 不同场景的数据上差异大 1.方案复杂 从FM到DeepFM rt 增 加了10倍怎么优化? 怎么搞出来一个效果还 不错的模型? ✗ 标注速度慢 ✗ 标注成本高 ✗ 样本分布不均匀 ✗ 隐私保护 • 多个环节 • 多种模型 ✗ 海量参数 ✗ 海量数据 深度学习应用主要的挑战: 3.工程优化复 杂 4.数据获取困 难 挑战 深度模型是非线性的: • 参数很多 • 参数敏感 • 不同场景的数据上差异大 手里面只有5张图片, 怎么搞出来一个效果还 不错的模型? ✗ 标注速度慢 隐私保护 • 多个环节 • 多种模型 ✗ 海量参数 ✗ 海量数据 从FM到DeepFM rt 增 加了10倍怎么优化? 2.模型效果优 化困难 1.方案复杂 Data Model Compute Platform 要求:  准确: 低噪声  全面: 同分布 模型选型:  容量大  计算量小 训练推理:  高qps, 低rt  支持超大模型  性价比 流程长、环节多:
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 第29 期| 2023 年9 月- 技术雷达

    我们的使命,Thoughtworks 技术雷达就是为了 完成这一使命。它由 Thoughtworks 中一群资深 技术领导组成的技术顾问委员会,通过定期讨论 Thoughtworks 的全球技术战略以及对行业有重 大影响的技术趋势而创建。 技术雷达以独特的形式记录技术顾问委员会的讨 论结果,从首席技术官到开发人员,雷达将会为各 路利益相关方提供价值。这些内容只是简要的总结。 我们建议您探索雷达中提到的内容以了解更多细 7 众多大语言模型 大语言模型(LLMs)为现今人工智能的许多重要突破奠定了基础。目前的应用多使用类似聊天的界面进行交 互,例如 ChatGPT 或 Google Bard。生态中的主要竞争者(例如 OpenAI 的 ChatGPT,Google Bard,Meta 的 LLaMA 以及亚马逊的 Bedrock 等)在我们的讨论中占据重要地位。更广泛来说,大语言模型可以应用于从 内容 。通过自然语言的抽象层,这些大模型 成为了强大的工具库,被诸多信息工作者广泛使用。我们讨论了大语言模型的各个方面,包括自托管式大语言 模型,相较云托管的大语言模型,它支持更多的定制和管控。随着大语言模型日益复杂,我们正在深思如何在 小型设备上运行大语言模型,特别是在边缘设备和资源受限的环境中。我们还提到有望提高性能的 ReAct 提示 工程,以及利用大语言模型驱动的自主代理开发远超简单的问
    0 码力 | 43 页 | 2.76 MB | 1 年前
    3
共 224 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 23
前往
页
相关搜索词
AI模型千问qwen中文文档阿里容器服务大促备战机器学习课程温州大学11深度序列李东亮云端图像技术应用运维上海2017训练Kubernetes实践袁晓沛TensorFlow快速入门实战上手部署推荐基础特点大规规模大规模系统设计27原生赋能AIoT边缘计算形态以及成熟成熟度之道高磊云上建模程孟力292023雷达
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩