云计算白皮书2023年7月 云计算白皮书 (2023 年) 版权声明 本白皮书版权属于中国信息通信研究院,并受法律保 护。转载、摘编或利用其它方式使用本白皮书文字或者观 点的,应注明“来源:中国信息通信研究院”。违反上述声 明者,本院将追究其相关法律责任。 前 言 党的二十大报告提出,要构建新一代信息技术等一批新的增长 引擎,打造具有国际竞争力的数字产业集群。云计算是信息技术发 展和服 势,是信息时代国际竞争的制高点和经济发展新动能的助燃剂。云 计算引发了软件开发部署模式的创新,成为承载各类应用的关键基 础设施,并为大数据、物联网、人工智能等新兴领域的发展提供基 础支撑。加快推动云计算创新发展,顺应新一轮科技革命和产业变 革趋势,是推进中国式现代化进程的关键。 过去一年,全球和我国云计算产业保持快速发展,并呈现出以 下特点: 一是云计算战略价值在全球范围内持续提升。美国继“云优先” Smart)之后,又出台多个战略文件, 将云计算应用至相关领域,并明确提出通过云战略获取全球优势, 以确保其在经济、军事、科技等领域的领先地位。欧洲、亚洲等主 要国家纷纷发布国家战略或计划,推动云计算在各行业的应用布局, 深度挖掘云计算产业价值。我国政策指引云计算应用创新,持续推 动云计算与实体经济融合走深。 二是全球云计算市场稳定增长,我国保持快速发展。2022 年, 全球云计算市场规模为 4,910 亿美元,增速0 码力 | 47 页 | 1.22 MB | 1 年前3
【05 计算平台 蓉荣】Flink 批处理及其应⽤What is Apache Flink * Apache Flink 是⼀一个分布式⼤大数据处理理引擎 * 可对有限数据流和⽆无限数据流进⾏行行有状态计算 * 可部署在各种集群环境 * 对各种⼤大⼩小的数据规模进⾏行行快速计算 为什什么Flink能做批处理理 Table Stream Bounded Data Unbounded Data SQL Runtime Lake vs. Data Warehouse Flink Batch应⽤用 - 数据湖 Flink Batch应⽤用 - 数据湖 Blink SQL+UDF Queue 存储类 存储 计算 存储 Queue 存储类 • Kafka • Datahub • SLS • MQ • OSS • OTS • HBase • RDS • ADS • HDFS • OSS Batch应⽤用 - 数仓 简化架构 ⽅方便便运维 Flink社区规划 Flink AliFlink 社区 ⽣生态 实时计算 StreamC ompute 1 3 4 2 Flink 实时计算 商业化版本 阿⾥里里云实时计算产品⽅方向 存储计算分离 架构 ⾼高性能 全托管架构 全功能⼤大数据 处理理能⼒力力 Thanks0 码力 | 12 页 | 1.44 MB | 1 年前3
函数计算在双11小程序场景中的应用阿里云函数计算技术专家 函数计算在双11小程序场景中的应用 关注“阿里巴巴云原生”公众号 回复 1124 获取 PPT自我介绍 •吴天龙(花名: 木吴) •阿里云函数计算技术专家 •2013 年加入阿里云,参与分布式数据库, 对象存储等产品的开发。现任阿里云函数 计算架构师,聚焦于 Serverless 产品功 能和大规模资源伸缩调度、性能优化等系 统核心能力的研发。❖ 函数计算介绍 ❖ ❖ 双11小程序场景介绍 ❖ 技术挑战 ❖ Demo 目录函数计算-介绍 • 通用Serverless计算平 台 • 与云端事件源无缝集成 • 弹性伸缩,按量付费函数计算-介绍双11小程序场景介绍小程序场景的挑战 n 安全隔离 n 开发效率 n 大量的小程序是不活跃的 n 活动高峰期流量激增函数计算-冷启动优化 Download & Extract Code User Code 10ms~60000ms 预留实例 0ms 0ms函数计算-弹性伸缩 C1 C1 C2 C1 C2 时间 t1 t2函数计算-预留实例 • 预留实例:性能好 • 按量实例:按需使用函数计算-预留实例 预留实例 按量实例 效果 0 0 禁止调用 10 0 只使用预留实例,固定费用 0 10 只使用按量实例,按需付费 10 5 混合模式,兼顾性能和成本函数计算 DemoThank you ! 关注“阿里巴巴云原生”公众号0 码力 | 13 页 | 6.95 MB | 6 月前3
深度解析CNCF社区⾸个基于Kubernetes的边缘计算平台KubeEdge深度解析CNCF社区⾸首个基于Kubernetes的边缘计算平台KubeEdge� 向新勇� https://github.com/edisonxiang� Introduce� ➔ 华为开源社区⼯工程师� ➔ KubeEdge社区Member� ➔ Kubernetes社区Member� ➔ OpenSDS社区Memeber� ➔ OpenStack社区数据保护项⽬目联合发起⼈人� ➔ 边缘计算 & 应⽤用场景 & ⾯面临的挑战� ➔ Why KubeEdge & 基础架构 & 设备管理理 & 实战� ➔ 后续规划 & 社区贡献 & 技术交流� 边缘计算� 云计算是集中化的,离终端设备(如摄像头、传感器器等)和⽤用户较远,对于实时性要求⾼高的计算需求,把计算放在云上会引起较⻓长的⽹网络延 时、⽹网络拥塞、服务质量量下降等问题。⽽而终端设备通常计算能⼒力力不不 ⾜足,⽆无法与云端相⽐比。在此情况下,边缘计算应运⽽而⽣生,将云端计算能⼒力力 延伸到靠近终端设备的边缘节点,就近提供服务。边缘计算不不是云计算的替代品,边缘计算减轻了了云计算架构的计算负担,是其补充和延伸。 云边协同才能够最⼤大程度的发挥作⽤用。连上云的边才有强⼤大的能⼒力力和灵活性。连上边的云才有数据引流上云和应⽤用服务落地点。� 边缘计算——快速发展的四⼤大因素� Gartner公布0 码力 | 20 页 | 2.08 MB | 1 年前3
构建基于富媒体大数据的弹性深度学习计算平台构建基于富媒体大数据的弹性深度学 习计算平台 SPEAKER / 土土@七牛 AtLab Mobile —> 富媒体时代 数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 …0 码力 | 21 页 | 1.71 MB | 1 年前3
27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-1 远端控制 云端分析系统 设备端 自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 设备端 (现场)边缘计算BOX 业务场景复杂,对算力、通信要求很高,计算放置于 云端时效性差,另外无法现场就对业务进行处理,比 如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 定位为基于物模型的计算 定位为基于业务的计算 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-2 • 为了更好的为客户业 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 高算力的场景,需要 实现云边一体纳管, 简化运维,降低成本, 客户专注于业务领域。 • 无论是AIoT还是边缘 计算,核心要素是计 算,计算平台的训练 平台位于云端,而推 理计算位于BOX端,并 且能够适应各类算法 和硬件的要求,形成 一个通用计算平台, 更普遍的为客户场景0 码力 | 20 页 | 5.17 MB | 6 月前3
24-云原生中间件之道-高磊Middleware OS Virtualization Servers Storage NetWorking PaaS 硬件与虚拟化厂商提供,如果是HCI架构, 作为总体集成方,会降低安全集成成本 可信计算环境:OS安全、TPM加密、TEE可信环境 云原生安全:镜像安全、镜像仓库安全、容器加固隔离、通信零信任 (Istio零信任、Calico零信任、Cilium零信任、WorkLoad鉴权、WorkLoad 间授权等)、DevSecOps(安全左右移等等,比如代码或者镜像扫描)、 RASP应用安全、数据安全、态势感知与风险隔离 由于云原生托管的应用是碎片化的,环境变化也是碎片化的,而且其业务类型越来越多,比如已经延展到边 缘计算盒子,此时攻击面被放大,在云原生环境下安全是一个核心价值,需要立体纵深式的安全保障。 由于云原生DevOps环境追求效率以及运行态的动态治理能力,导致传统安全实施方法、角色、流程、技术 都发生了很多 信息利用规范化,数字安全合规管理将成为企业的必备能力。与此同时,企业还 应将安全作为“一把手工程”,在部署数字化转型的同时,推进安全前置。 前沿的数字化技术也让产业安全有了更多内涵。5G、AI、隐私计算等技术在构筑数字大楼的同时,不仅带来了全新的安全场景,也成为网络安全攻防 当中的利器;2020年井喷的远程办公,拷问传统安全边界防线,让“零信任”这一有着十年历史的理念再次受到关注,成为企业构建后疫情时代安全体系0 码力 | 22 页 | 4.39 MB | 6 月前3
基于Apache APISIX 与RocketMQ 构建云原生一体化架构rocketm q-con n ect 进入孵化 2021 5.0 -p rev iew 发布 性能优化、PoP 消费,多存储目录, 轻量级队列 rocketm q-strea m s 轻量级实时计算 引擎发布 5.0 消息事件流融合处理平台 Sta r: 1 .7w C on tributor: 50 0 + RocketMQ 发展历程 W r i t e h e r e S o 普通云盘 ESSD 云盘 SA TA 独占/混部/独立交付…… • 集群节点异常成为常态 • 依赖服务随时可能在进行迁移或重启 • 对弹性的要求开始从物理资源变为逻辑资源 • IaaS 的多样性对应用交付部署提出了更高要求 • 可运维性、可观测性带来了更大挑战 • 多租环境带来了更高的网络及安全隔离要求 • 无限资源 vs 有限成本 • 冗长的请求链路,膨胀的技术栈 ……. 面向失败 多场景 云原生时代的挑战 云原生四要素 云原生时代的 RocketMQ admin 富客户端 轻量级 SD K API兼容 计算 云存储 VPC 网络 Kubernetes Name Server Name Server Name Server 计算集群 可观测 remoting gRPC MQTT AMQP AC L 消息 事件 Subscription 多租户 Store0 码力 | 22 页 | 2.26 MB | 1 年前3
Kubernetes全栈容器技术剖析Kubernetes全栈容器技术剖析 陈弘 华为云PaaS解决方案架构师 3 华为云应用服务:让企业应用上云更简单,运行更高效 计算(ECS/BMS/ARM) 存储(EVS/OBS/SFS) 网络(VPC/EIP) 开源原生 商业增强:控制面HA、跨AZ高可用、滚动升级、裸金属容器 云容器引擎 CCE 微服务引擎 CSE 开源原生 企业级 中间件 分布式 缓存 DCS 软件开发服 务 DevCloud 云性能测试 CPTS PaaS IaaS 开发测试 统一编排 自动化部署、微服务注册发现与治理、中间件运行环境 智能运维 开放网关APIG 应用 函数计算 FunctionStage FunctionGraph 4 什么是容器技术? • 对比虚机的优势: • 通过共享操作系统内核,细粒度资源隔离。(降低资源成本) • 定义了环境无关的标准的交付、部署规范(提高交付效率) 源 限制,增加ARM64支持,运维增强,容器重启策略 OCI & Docker 社区 CNCF/OCI基金会的初创会员、白金会员, K8S TOC 成员,12个 Maintainer 8 计算(ECS/BMS/ARM) 存储(EVS/OBS/SFS) 网络(VPC/EIP) 多样的生态接入 • 支持多语言多框架服务接入 • 支持第三方模板和镜像快速部署 完全开放的原生平台 •0 码力 | 26 页 | 3.29 MB | 1 年前3
机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入我们实际构建和训练模型的数据集将如下所示: 这被称为连续词袋结构,并在word2vec论文 one of the word2vec papers 中进行过描述。 18 3.Word2Vec 负采样 计算的角度来看,SkipGram非常消耗资源:尤其是我们将在 数据集中为每个训练样本做一次(很可能数千万次)。我们 需要做一些事情来提高效率。 一种方法是将目标分成两个步骤: 1.生成高质量的单词嵌入(不要担心下一个单词预测)。 4个随机选取的负样本,这就是? = 4的情况。所以不使用 一个巨大的10,000维度的softmax,因为计算成本很高, 而是把它转变为10,000个二分类问题,每个都很容易计算 ,每次迭代我们要做的只是训练它们其中的5个,一般而言 就是? + 1个,其中?个负样本和1个正样本。这也是为什么 这个算法计算成本更低,因为只需更新? + 1个逻辑单元, ? + 1个二分类问题,相对而言每次迭代的成本比更新 阵(即使两个矩阵都在我们的词汇表中嵌入了每个单词)。 23 3.Word2Vec 训练流程 现在我们需要一种方法将这些分数转化为看起来像概率的东西 : 使用sigmoid函数把概率转换为0和1。 然后,我们计算输入嵌入与每个上下文嵌入的点积。在每种情况 下,会产生一个数字,该数字表示输入和上下文嵌入的相似性。 24 3.Word2Vec 训练流程 现在我们可以将sigmoid操作的输出视为这些样本的模型输出。0 码力 | 44 页 | 2.36 MB | 1 年前3
共 215 条
- 1
- 2
- 3
- 4
- 5
- 6
- 22













