积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(14)数据库中间件(14)

语言

全部英语(7)中文(简体)(7)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.121 秒,为您找到相关结果约 14 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the system. In availability really solve the single‐node problem. it can ease problems brought by the high data amount and concurrency amount, but cannot solve them completely. After vertical sharding, if the data amount in the table XA based distributed trans‐ actions since they are not able to ensure its performance in high‐concurrency situations. They usually replace strongly consistent transactions with eventually consistent soft
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0-alpha Document

    the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the system. In availability really solve the single‐node problem. it can ease problems brought by the high data amount and concurrency amount, but cannot solve them completely. After vertical sharding, if the data amount in the table XA based distributed trans‐ actions since they are not able to ensure its performance in high‐concurrency situations. They usually replace strongly consistent transactions with eventually consistent soft
    0 码力 | 311 页 | 2.09 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.0 Document

    Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Mass data high concurrency in OLTP scenarios . . . . . . . . . . . . . . . . . . . 19 Mass data real‐time analysis in OLAP the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the system. In availability really solve the single‐node problem. it can ease problems brought by the high data amount and concurrency 3.1. Sharding 17 Apache ShardingSphere document, v5.2.0 amount, but cannot solve them completely
    0 码力 | 483 页 | 4.27 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.4.1 Document

    Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Mass data high concurrency in OLTP scenarios . . . . . . . . . . . . . . . . . . . 22 Mass data real‐time analysis in OLAP the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the system. In availability really solve the single‐node problem. it can ease problems brought by the high data amount and concurrency 8.1. Sharding 20 Apache ShardingSphere document amount, but cannot solve them completely. After
    0 码力 | 572 页 | 3.73 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.1 Document

    Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Mass data high concurrency in OLTP scenarios . . . . . . . . . . . . . . . . . . . 18 Mass data real‐time analysis in OLAP the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the system. In availability really solve the single‐node problem. it can ease problems brought by the high data amount and concurrency 3.1. Sharding 16 Apache ShardingSphere document, v5.2.1 amount, but cannot solve them completely
    0 码力 | 523 页 | 4.51 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 document

    Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Mass data high concurrency in OLTP scenarios . . . . . . . . . . . . . . . . . . . 22 Mass data real‐time analysis in OLAP the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the system. In availability really solve the single‐node problem. it can ease problems brought by the high data amount and concurrency 8.1. Sharding 20 Apache ShardingSphere document amount, but cannot solve them completely. After
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0 Document

    the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the system. In availability really solve the single‐node problem. it can ease problems brought by the high data amount and concurrency amount, but cannot solve them completely. After vertical sharding, if the data amount in the table XA based distributed trans‐ actions since they are not able to ensure its performance in high‐concurrency situations. They usually replace strongly consistent transactions with eventually consistent soft
    0 码力 | 403 页 | 3.15 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the system. In availability really solve the single‐node problem. it can ease problems brought by the high data amount and concurrency 4.3. Sharding 25 Apache ShardingSphere document, v5.1.2 amount, but cannot solve them completely XA based distributed trans‐ actions since they are not able to ensure its performance in high‐concurrency situations. They usually replace strongly consistent transactions with eventually consistent soft
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    sql-statement-cache.maximum-size= # SQL 语句 本地缓存最大容量 spring.shardingsphere.rules.sql-parser.sql-statement-cache.concurrency-level= # SQL 语句本地缓存并发级别,最多允许线程并发更新的个数 spring.shardingsphere.rules.sql-parser.parse-tree-cache parse-tree-cache.maximum-size= # 解析树本地缓存 最大容量 spring.shardingsphere.rules.sql-parser.parse-tree-cache.concurrency-level= # 解析树本 地缓存并发级别,最多允许线程并发更新的个数 5.1.4 Spring 命名空间 简介 ShardingSphere‐JDBC 提供官方的 Spring 命名空间,使开发者可以非常便捷的整合 名称 类型 说明 id 属性 本地缓存配置项名称 initial‐capacity 属性 本地缓存初始容量 maximum‐size 属性 本地缓存最大容量 concurrency‐level 属性 本地缓存并发级别,最多允许线程并发更新的个数 混合规则 混合配置的规则项之间的叠加使用是通过数据源名称和表名称关联的。 如果前一个规则是面向数据源聚合的,下一个规则
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    sql-statement-cache.maximum-size= # SQL 语句 本地缓存最大容量 spring.shardingsphere.rules.sql-parser.sql-statement-cache.concurrency-level= # SQL 语句本地缓存并发级别,最多允许线程并发更新的个数 spring.shardingsphere.rules.sql-parser.parse-tree-cache parse-tree-cache.maximum-size= # 解析树本地缓存 最大容量 spring.shardingsphere.rules.sql-parser.parse-tree-cache.concurrency-level= # 解析树本 地缓存并发级别,最多允许线程并发更新的个数 5.1.4 Spring 命名空间 简介 ShardingSphere‐JDBC 提供官方的 Spring 命名空间,使开发者可以非常便捷的整合 名称 类型 说明 id 属性 本地缓存配置项名称 initial‐capacity 属性 本地缓存初始容量 maximum‐size 属性 本地缓存最大容量 concurrency‐level 属性 本地缓存并发级别,最多允许线程并发更新的个数 混合规则 混合配置的规则项之间的叠加使用是通过数据源名称和表名称关联的。 如果前一个规则是面向数据源聚合的,下一个规则
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere5.1Document5.0alpha5.25.4v5document中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩