积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(17)数据库中间件(17)

语言

全部中文(简体)(10)英语(7)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.117 秒,为您找到相关结果约 17 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 5.2.1 Document

    common sharding algorithms such as modulo, hash, range, and time. Customized Sharding Algorithm Provides a portal for application developers to implement their sharding algorithms that are closely allowing users to manage the physical distribution of actual tables themselves. Customized sharding algorithms are further divided into: ‐ Standard Sharding Algo‐ rithm Used to deal with scenarios where sharding $->{ expression } in the config‐ uration to identify the row expressions. Data nodes and sharding algorithms are currently supported. The content of row expressions uses Groovy syntax, and all operations
    0 码力 | 523 页 | 4.51 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.0 Document

    common sharding algorithms such as modulo, hash, range, and time. Customized Sharding Algorithm Provides a portal for application developers to implement their sharding algorithms that are closely allowing users to manage the physical distribution of actual tables themselves. Customized sharding algorithms are further divided into: ‐ Standard Sharding Algo‐ rithm Used to deal with scenarios where sharding $->{ expression } in the config‐ uration to identify the row expressions. Data nodes and sharding algorithms are currently supported. The content of row expressions uses Groovy syntax, and all operations
    0 码力 | 483 页 | 4.27 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.4.1 Document

    themselves with the physical distribution of actual tables. Includes implementations of common sharding algorithms such as modulo, hash, range, and time. 8.1. Sharding 26 Apache ShardingSphere document Customized sharding algorithms that are closely related to their business operations, while allowing users to manage the physical distribution of actual tables themselves. Customized sharding algorithms are further $->{ expression } in the config‐ uration to identify the row expressions. Data nodes and sharding algorithms are currently supported. The content of row expressions uses Groovy syntax, and all operations
    0 码力 | 572 页 | 3.73 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 document

    themselves with the physical distribution of actual tables. Includes implementations of common sharding algorithms such as modulo, hash, range, and time. 8.1. Sharding 26 Apache ShardingSphere document Customized sharding algorithms that are closely related to their business operations, while allowing users to manage the physical distribution of actual tables themselves. Customized sharding algorithms are further $->{ expression } in the config‐ uration to identify the row expressions. Data nodes and sharding algorithms are currently supported. The content of row expressions uses Groovy syntax, and all operations
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0 Document

    ShardingSphere document, v5.0.0 Sharding Algorithm Data sharding can be achieved by sharding algorithms through =, >=, <=, >, <, BETWEEN and IN. It can be implemented by developers themselves, or using Java codes are not helpful in the unified management of common configurations. Writing sharding algorithms with inline expressions, users can store rules together, making them easier to be browsed and identify them. ShardingSphere currently supports the configurations of data nodes and sharding algorithms. Inline expressions use Groovy syntax, which can support all kinds of operations, including inline
    0 码力 | 403 页 | 3.15 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    supports multiple sharding columns. Sharding Algorithm Data sharding can be achieved by sharding algorithms through =, >=, <=, >, <, BETWEEN and IN. It can be implemented by developers themselves, or using Java codes are not helpful in the unified management of common configurations. Writing sharding algorithms with inline expressions, users can store rules together, making them easier to be browsed and identify them. ShardingSphere currently supports the configurations of data nodes and sharding algorithms. Inline expressions use Groovy syntax, which can support all kinds of operations, including inline
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    supports multiple sharding columns. Sharding Algorithm Data sharding can be achieved by sharding algorithms through =, >=, <=, >, <, BETWEEN and IN. It can be implemented by developers themselves, or using Java codes are not helpful in the unified management of common configurations. Writing sharding algorithms with inline expressions, users can store rules together, making them easier to be browsed and identify them. ShardingSphere currently supports the configurations of data nodes and sharding algorithms. Inline expressions use Groovy syntax, which can support all kinds of operations, including inline
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0-alpha Document

    by sharding algorithms through =, >=, <=, >, <, BETWEEN and IN. They need to be implemented by developers themselves and can be highly flexible. Currently, 3 kinds of sharding algorithms are available extracts all kinds of scenarios by sharding strategies, instead of pro‐ viding built‐in sharding algorithms. Therefore, it can provide higher abstraction and the interface for developers to implement sharding in SQL. StandardShardingStrategy only supports single sharding keys and pro‐ vides two sharding algorithms of PreciseShardingAlgorithm and RangeShardingAlgorithm. PreciseShardingAlgorithm is compulsory
    0 码力 | 311 页 | 2.09 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    spring.shardingsphere.rules.sharding.sharding-algorithms.. type= # 分片算法类型 spring.shardingsphere.rules.sharding.sharding-algorithms.. props.xxx= # 分片算法属性配置 ake spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline. type=INLINE spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline.props. algorithm-expression=ds-$->{user_id % 2} spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.type=INLINE spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.props. 4.1. ShardingSphere-JDBC 110
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    分片算法 spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline. type=INLINE spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline.props. algorithm-expression=ds_${user_id % 2} spring.shardingsphere.rules.sharding.sharding-algorithms.table_inline.type=INLINE spring.shardingsphere.rules.sharding.sharding-algorithms.table_inline.props. algorithm-expression=t_order_${order_id spring.shardingsphere.rules.sharding.sharding-algorithms.. type= # 分片算法类型 spring.shardingsphere.rules.sharding.sharding-algorithms.. props.xxx=# 分片算法属性配置
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere5.2Document5.4v55.0document5.1alpha中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩