积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(17)数据库中间件(17)

语言

全部中文(简体)(9)英语(8)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.109 秒,为您找到相关结果约 17 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    configuration work. Java codes are not helpful in the unified management of common configurations. Writing sharding algorithms with inline expressions, users can store rules together, making them easier alone or with sharding table and database; • Primary nodes need to be used for both reading and writing in the transaction; • Forcible primary database route based on SQL Hint; Unsupported • Data replication inconsistent; In the readwrite‐ splitting model, primary nodes need to be used for both reading and writing in the transaction. 4.6 HA 4.6.1 Background High availability is the most basic requirement of
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0 Document

    configuration work. Java codes are not helpful in the unified management of common configurations. Writing sharding algorithms with inline expressions, users can store rules together, making them easier alone or with sharding table and database; • Primary nodes need to be used for both reading and writing in the transaction; • Forcible primary database route based on SQL Hint; Unsupported • Data replication inconsistent; In the readwrite‐ splitting model, primary nodes need to be used for both reading and writing in the transaction. 4.5 Governance 4.5.1 Background As the scale of data continues to expand,
    0 码力 | 403 页 | 3.15 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    configuration work. Java codes are not helpful in the unified management of common configurations. Writing sharding algorithms with inline expressions, users can store rules together, making them easier alone or with sharding table and database; • Primary nodes need to be used for both reading and writing in the transaction; • Forcible primary database route based on SQL Hint; Unsupported • Data replication inconsistent; In the readwrite‐ splitting model, primary nodes need to be used for both reading and writing in the transaction. 4.6 HA 4.6.1 Background High availability is the most basic requirement of
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 document

    algorithm, using Java code implementation does not help to manage the configuration uniformly. But by writing the sharding algorithm through line expressions, the rule con‐ figuration can be effectively stored If there is no specific statement, the following implementations all use YAML 1.1 as the YAML writing specification. This does not prevent custom implementations of org.apache. shardingsphere.infra for data sharding, which allows users to create ShardingSphereData‐ Source objects directly by writing Java code, is flexible enough to integrate various types of business systems without relying on
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.0 Document

    algorithm, using Java code implementation does not help to manage the configuration uniformly. But by writing the sharding algorithm through line expressions, the rule con‐ figuration can be effectively stored for data sharding, which allows users to create ShardingSphereData‐ Source objects directly by writing Java code, is flexible enough to integrate various types of business systems without relying on Java API rule configuration allows users to directly create ShardingSphereData‐ Source objects by writing java code. The Java API configuration method is very flexible and can inte‐ grate various types
    0 码力 | 483 页 | 4.27 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0-alpha Document

    configuration work. Java codes are not helpful in the unified management of common configurations. Writing sharding algorithms with inline expressions, users can stored rules together, making them easier batch inserted SQL, if the inserted data crosses sharding, the user needs to rewrite SQL to avoid writing excessive data into the database. The differences between insert operation and query operation are: inconsistent. In the replica query model, the primary nodes need to be used for both reading and writing in the transaction. 3.4 Governance 3.4.1 Background As the scale of data continues to expand,
    0 码力 | 311 页 | 2.09 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.1 Document

    algorithm, using Java code implementation does not help to manage the configuration uniformly. But by writing the sharding algorithm through line expressions, the rule con‐ figuration can be effectively stored for data sharding, which allows users to create ShardingSphereData‐ Source objects directly by writing Java code, is flexible enough to integrate various types of business systems without relying on Java API rule configuration allows users to directly create ShardingSphereData‐ Source objects by writing java code. The Java API configuration method is very flexible and can inte‐ grate various types
    0 码力 | 523 页 | 4.51 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.4.1 Document

    algorithm, using Java code implementation does not help to manage the configuration uniformly. But by writing the sharding algorithm through line expressions, the rule con‐ figuration can be effectively stored for data sharding, which allows users to create ShardingSphereData‐ Source objects directly by writing Java code, is flexible enough to integrate various types of business systems without relying on Java API rule configuration allows users to directly create ShardingSphereData‐ Source objects by writing java code. The Java API configuration method is very flexible and can inte‐ grate various types
    0 码力 | 572 页 | 3.73 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    数据源停写, xx:任务 id STOP SCALING SOURCE WRITING 1234 RESTORE SCALING SOURCE WRITING jobId 旧的 ShardingSphere 数据源恢复写, xx:任务 id RESTORE SCALING SOURCE WRITING 1234 APPLY SCALING jobId 切换至新的 ShardingSphere EXECUTE_INCREMENTAL_TASK,全量迁移已完成,在增量迁移阶段。 选择一个业务低峰期,对源端库或数据操作入口做停写。 proxy 停写: mysql> STOP SCALING SOURCE WRITING 0130317c30317c3054317c7363616c696e675f6462; Query OK, 0 rows affected (0.07 sec) 数据一致性校验: mysql>
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 MYBATIS Quick Guide

    Application.This is discussed clearly in later chapters. mapper XML file prevents the burden of writing SQL statements repeatedly in the application. In comparison to JDBC, almost 95% of the code is reduced
    0 码力 | 34 页 | 301.72 KB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere5.1Document5.0v5document5.2alpha5.4中文文档MYBATISQuickGuide
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩