积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(28)数据库中间件(28)

语言

全部中文(简体)(15)英语(9)

格式

全部PDF文档 PDF(28)
 
本次搜索耗时 0.120 秒,为您找到相关结果约 28 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere v5.5.0 document

    Re ad /w ri te S pl it ti ng Read/write splitting can be used to cope with business access with high stress. Sharding‐ Sphere provides flexible read/write splitting capabilities and can achieve read other, and mul‐ tiple components can be used together by overlaying. It includes data sharding, read/write splitting, data encryption and shadow database and so on. The user‐defined feature can be fully customized faced the bottleneck with increasing TPS. For the application with massive concurrence read but less write in the same time, we can divide the database into a primary database and a replica database. The
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    READWRITE_SPLITTING dataSourceGroups: (+): # 读写分离逻辑数据源名称,默认使用 Groovy 的行表达式 SPI 实现来 解析 write_data_source_name: # 写库数据源名称,默认使用 Groovy 的行表达式 SPI 实现来解析 read_data_source_names: # 读库数据源名称,多个从数据源用逗号分隔,默认使用 使用读写分离数据源 配置示例 rules: - !READWRITE_SPLITTING dataSourceGroups: readwrite_ds: writeDataSourceName: write_ds readDataSourceNames: - read_ds_0 - read_ds_1 transactionalReadQueryStrategy: PRIMARY loadBalancerName: dataSourceConfig = new ReadwriteSplittingDataSourceRuleConfiguration( "demo_read_query_ds", "demo_write_ds", Arrays.asList("demo_read_ds_ 0", "demo_read_ds_1"), "demo_weight_lb"); Properties algorithmProps
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.0 Document

    Availability Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Dynamic Read/Write Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.7 Limitations . . . . . single database, which can achieve data security across underlying data sources. Read/write Split‐ ting Read/write splitting can be used to cope with business access with high stress. Based on its understanding topological awareness of the underlying database, ShardingSphere provides flexible and secure read/write splitting capabilities and can achieve load balancing for read access. High Avail‐ ability High
    0 码力 | 483 页 | 4.27 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.4.1 Document

    Re ad /w ri te S pl it ti ng Read/write splitting can be used to cope with business access with high stress. Sharding‐ Sphere provides flexible read/write splitting capabilities and can achieve read other, and mul‐ tiple components can be used together by overlaying. It includes data sharding, read/write splitting, data encryption and shadow database and so on. The user‐defined feature can be fully customized faced the bottleneck with increasing TPS. For the application with massive concurrence read but less write in the same time, we can divide the database into a primary database and a replica database. The
    0 码力 | 572 页 | 3.73 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.1 Document

    Availability Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Dynamic Read/Write Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.7 Limitations . . . . . underlying data sources. Read/write Split‐ ting Read/write splitting can be used to cope with business access with high stress. Sharding‐ Sphere provides flexible read/write splitting capabilities and other, and mul‐ tiple components can be used together by overlaying. It includes data sharding, read/write splitting, database high availability, data encryption and shadow database and so on. The user‐defined
    0 码力 | 523 页 | 4.51 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    READWRITE_SPLITTING dataSources: (+): # 读写分离逻辑数据源名称,默认使用 Groovy 的行表达式 SPI 实现来 解析 write_data_source_name: # 写库数据源名称,默认使用 Groovy 的行表达式 SPI 实现来解析 read_data_source_names: # 读库数据源名称,多个从数据源用逗号分隔,默认使用 使用读写分离数据源 配置示例 rules: - !READWRITE_SPLITTING dataSources: readwrite_ds: writeDataSourceName: write_ds readDataSourceNames: - read_ds_0 - read_ds_1 transactionalReadQueryStrategy: PRIMARY loadBalancerName: dataSourceConfig = new ReadwriteSplittingDataSourceRuleConfiguration( "demo_read_query_ds", "demo_write_ds", Arrays.asList("demo_read_ds_ 0", "demo_read_ds_1"), "demo_weight_lb"); Properties algorithmProps
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    参数解释 读写分离 rules: - !READWRITE_SPLITTING dataSources: (+): # 读写分离逻辑数据源名称 write_data_source_name: # 写库数据源名称 read_data_source_names: # 读库数据源名称,多个从数据源用逗号分隔 transactionalReadQueryStrategy 使用读写分离数据源 配置示例 rules: - !READWRITE_SPLITTING dataSources: readwrite_ds: writeDataSourceName: write_ds readDataSourceNames: - read_ds_0 - read_ds_1 transactionalReadQueryStrategy: PRIMARY loadBalancerName: dataSourceConfig = new ReadwriteSplittingDataSourceRuleConfiguration( "demo_read_query_ds", "demo_write_ds", Arrays.asList("demo_read_ds_ 0", "demo_read_ds_1"), "demo_weight_lb"); Properties algorithmProps
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    READWRITE_SPLITTING dataSources: (+): # 读写分离逻辑数据源名称 static-strategy: # 读写分离类型 write-data-source-name: # 写库数据源名称 read-data-source-names: # 读库数据源名称,多个从数据源用逗号分隔 loadBalancerName: # 负载均衡算法名称 (+): # 读写分离逻辑数据源名称 dynamic-strategy: # 读写分离类型 auto-aware-data-source-name: # 数据库发现逻辑数据源名称 write-data-source-query-enabled: # 从库全部下线,主库是否承担读流量 loadBalancerName: # 负载均衡算法名称 # 负载均衡算法配置 loadBalancers: rules: - !READWRITE_SPLITTING dataSources: readwrite_ds: staticStrategy: writeDataSourceName: write_ds readDataSourceNames: - read_ds_0 - read_ds_1 loadBalancerName: random loadBalancers: random:
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    the item to be sorted which has its own order, merger ordering only has the time complexity of O(mn(log m)), and the number of shard m is generally small enough to be considered as O(n), with a very low transactions after sharding; • Support RC isolation level; • Rollback transaction according to undo log; • Support recovery committing transaction automatically after the service is down. Unsupported faced the bottleneck with increasing TPS. For the application with massive concurrence read but less write in the same time, we can divide the database into a primary database and a replica database. The
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    databases in the same log . . . . . . . . . . . . . . . . . . . . . . 215 To distinguish databases and users in the same log . . . . . . . . . . . . . . . . . 216 To split into different log files . . . . the item to be sorted which has its own order, merger ordering only has the time complexity of O(mn(log m)), and the number of shard m is generally small enough to be considered as O(n), with a very low transactions after sharding; • Support RC isolation level; • Rollback transaction according to undo log; • Support recovery committing transaction automatically after the service is down. Unsupported
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
ApacheShardingSpherev55.0document中文文档5.2Document5.45.35.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩