积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(20)数据库中间件(20)

语言

全部中文(简体)(11)英语(8)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.098 秒,为您找到相关结果约 20 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 5.0.0-alpha Document

    the following diagram. Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma‐ chine and can be extended relatively freely, so it can be taken as a standard avoided, some businesses still need to keep transactions consistent. Internet giants have not massively adopted XA based distributed trans‐ actions since they are not able to ensure its performance in sharding SQL needs to operate 200 tables under some database case, should we choose to create 200 parallel connection executions or a serial connection execution? Or to say, how to choose between efficiency
    0 码力 | 311 页 | 2.09 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0 Document

    ShardingSphere document, v5.0.0 Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma‐ chine and can be extended relatively freely, so it can be taken as a standard avoided, some businesses still need to keep transactions consistent. Internet giants have not massively adopted XA based distributed trans‐ actions since they are not able to ensure its performance in Transaction The earliest distributed transaction model of XA standard is X/Open Distributed Transaction Processing (DTP) model brought up by X/Open, XA for short. Distributed transaction based on XA standard has
    0 码力 | 403 页 | 3.15 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    the following diagram. Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma‐ chine and can be extended relatively freely, so it can be taken as a standard avoided, some businesses still need to keep transactions consistent. Internet giants have not massively adopted XA based distributed trans‐ actions since they are not able to ensure its performance in Transaction The earliest distributed transaction model of XA standard is X/Open Distributed Transaction Processing (DTP) model brought up by X/Open, XA for short. Distributed transaction based on XA standard has
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    the following diagram. Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma‐ chine and can be extended relatively freely, so it can be taken as a standard avoided, some businesses still need to keep transactions consistent. Internet giants have not massively adopted XA based distributed trans‐ actions since they are not able to ensure its performance in Transaction The earliest distributed transaction model of XA standard is X/Open Distributed Transaction Processing (DTP) model brought up by X/Open, XA for short. Distributed transaction based on XA standard has
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.0 Document

    the following diagram. Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma‐ chine and can be extended relatively freely, so it can be taken as a standard Co ncurrent per formance no loss severe loss slight loss Applied s cenar‐ ios Inconsistent processing by the business side short transaction & low‐ level concurrency long transaction & high concurrency effectively avoiding row locks. One primary database with multiple replica databases can further enhance processing capacity by dis‐ tributing queries evenly into multiple data replicas. Multiple primary databases
    0 码力 | 483 页 | 4.27 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.1 Document

    the following diagram. Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma‐ chine and can be extended relatively freely, so it can be taken as a standard Co ncurrent per formance no loss severe loss slight loss Applied s cenar‐ ios Inconsistent processing by the business side short transaction & low‐ level concurrency long transaction & high concurrency effectively avoiding row locks. One primary database with multiple replica databases can further enhance processing capacity by dis‐ tributing queries evenly into multiple data replicas. Multiple primary databases
    0 码力 | 523 页 | 4.51 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 document

    the following diagram. Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma‐ chine and can be extended relatively freely, so it can be taken as a standard Co ncurrent per formance no loss severe loss slight loss Applied s cenar‐ ios Inconsistent processing by the business side short transaction & low‐ level concurrency long transaction & high concurrency effectively avoiding row locks. One primary database with multiple replica databases can further enhance processing capacity by dis‐ tributing queries evenly into multiple data replicas. Multiple primary databases
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.4.1 Document

    the following diagram. Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma‐ chine and can be extended relatively freely, so it can be taken as a standard Co ncurrent per formance no loss severe loss slight loss Applied s cenar‐ ios Inconsistent processing by the business side short transaction & low‐ level concurrency long transaction & high concurrency effectively avoiding row locks. One primary database with multiple replica databases can further enhance processing capacity by dis‐ tributing queries evenly into multiple data replicas. Multiple primary databases
    0 码力 | 572 页 | 3.73 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere ElasticJob document Nov 01, 2023

    availability in distributed system – Scale out for throughput and efficiency improvement – Job processing capacity is flexible and scalable with the allocation of resources • Resource Assign – Execute Elastic Schedule Elastic schedule is the most important feature in ElasticJob, which acts as a job processing system that enables the horizontal scaling of jobs by sharding, it’s also the origin of the project election, sharding and failover. They are used for master node election, sharding and failover processing respectively. The leader node is an internally used node. If you are not interested in the principle
    0 码力 | 101 页 | 1.53 MB | 1 年前
    3
  • pdf文档 MYBATIS Quick Guide

    are compatible with the SPRING framework, so it should not be a problem to choose one of them. Processing math: 29%
    0 码力 | 34 页 | 301.72 KB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere5.0alphaDocument5.15.2v5document5.4ElasticJobNov012023MYBATISQuickGuide
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩