积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(17)数据库中间件(17)

语言

全部中文(简体)(10)英语(7)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.141 秒,为您找到相关结果约 17 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 5.0.0-alpha Document

    according to sorting conditions after merging. For example, if the SQL is: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; The following picture shows the pagination execution results without by score common in both tables, and they are supposed to be 95 and 90. Since the executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and 75 from t_score_1. When merging results, it can only merge from 90, 80, 85 and 75 already acquired, so the right result cannot be acquired anyway. The right way is to rewrite pagination conditions
    0 码力 | 311 页 | 2.09 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0 Document

    according to sorting conditions after merging. For example, if the SQL is: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; The following picture shows the pagination execution results without by score common in both tables, and they are supposed to be 95 and 90. Since the executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and 75 from t_score_1. When merging results, it can only merge from 90, 80, 85 and 75 already acquired, so the right result cannot be acquired anyway. The right way is to rewrite pagination conditions
    0 码力 | 403 页 | 3.15 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    according to sorting conditions after merging. For example, if the SQL is: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; The following picture shows the pagination execution results without by score common in both tables, and they are supposed to be 95 and 90. Since the executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and 75 from t_score_1. When merging results, it can only merge from 90, 80, 85 and 75 already acquired, so the right result cannot be acquired anyway. The right way is to rewrite pagination conditions
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.0 Document

    data according to sorting conditions after merging. For example, if SQL is: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; The following picture shows the pagination execution results without sorted by score in both tables, and they are supposed to be 95 and 90. Since executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and and 75 from t_score_1. When merging results, it can only merge from 90, 7.4. Sharding 373 Apache ShardingSphere document, v5.2.0 80, 85 and 75 already acquired, so the right result cannot be acquired
    0 码力 | 483 页 | 4.27 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    according to sorting conditions after merging. For example, if the SQL is: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; The following picture shows the pagination execution results without by score common in both tables, and they are supposed to be 95 and 90. Since the executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and 75 from t_score_1. When merging results, it can only merge from 90, 80, 85 and 75 already acquired, so the right result cannot be acquired anyway. The right way is to rewrite pagination conditions
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.1 Document

    data according to sorting conditions after merging. For example, if SQL is: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; The following picture shows the pagination execution results without sorted by score in both tables, and they are supposed to be 95 and 90. Since executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and and 75 from t_score_1. When merging results, it can only merge from 90, 7.4. Sharding 400 Apache ShardingSphere document, v5.2.1 80, 85 and 75 already acquired, so the right result cannot be acquired
    0 码力 | 523 页 | 4.51 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.4.1 Document

    data according to sorting conditions after merging. For example, if SQL is: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; The following picture shows the pagination execution results without sorted by score in both tables, and they are supposed to be 95 and 90. Since executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and and 75 from t_score_1. When merging results, it can only merge from 90, 80, 85 and 75 already acquired, so the right result cannot be acquired anyway. 12.4. Sharding 512 Apache ShardingSphere document
    0 码力 | 572 页 | 3.73 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 document

    data according to sorting conditions after merging. For example, if SQL is: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; The following picture shows the pagination execution results without sorted by score in both tables, and they are supposed to be 95 and 90. Since executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and and 75 from t_score_1. When merging results, it can only merge from 90, 80, 85 and 75 already acquired, so the right result cannot be acquired anyway. 12.4. Sharding 541 Apache ShardingSphere document
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    SQL 为: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; 下图展示了不进行 SQL 的改写的分页执行结果。 通过图中所示,想要取得两个表中共同的按照分数排序的第 2 条和第 3 条数据,应该是 95 和 90。由于执 行的 SQL 只能从每个表中获取第 2 条和第 3 条数据,即从 t_score_0 表中获取的是 90 和 和 80;从 t_score_1 表中获取的是 85 和 75。因此进行结果归并时,只能从获取的 90,80,85 和 75 之中进行归并,那么结 果归并无论怎么实现,都不可能获得正确的结果。 正确的做法是将分页条件改写为 LIMIT 0, 3,取出所有前两页数据,再结合排序条件计算出正确的数 据。下图展示了进行 SQL 改写之后的分页执行结果。 3.1. 数据分片 34 Apache 级队列,t_score_0 的第一个数据值 最大,t_score_2 的第一个数据值次之,t_score_1 的第一个数据值最小,因此优先级队列根据 t_score_0, t_score_2 和 t_score_1 的方式排序队列。 下图则展现了进行 next 调用的时候,排序归并是如何进行的。通过图中我们可以看到,当进行第一次 next 调用时,排在队列首位的 t_score_0 将会被
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    SQL 为: SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2; 下图展示了不进行 SQL 的改写的分页执行结果。 通过图中所示,想要取得两个表中共同的按照分数排序的第 2 条和第 3 条数据,应该是 95 和 90。由于执 行的 SQL 只能从每个表中获取第 2 条和第 3 条数据,即从 t_score_0 表中获取的是 90 和 和 80;从 t_score_1 表中获取的是 85 和 75。因此进行结果归并时,只能从获取的 90,80,85 和 75 之中进行归并,那么结 果归并无论怎么实现,都不可能获得正确的结果。 正确的做法是将分页条件改写为 LIMIT 0, 3,取出所有前两页数据,再结合排序条件计算出正确的数 据。下图展示了进行 SQL 改写之后的分页执行结果。 7.1. 数据分片 237 Apache 级队列,t_score_0 的第一个数据值 最大,t_score_2 的第一个数据值次之,t_score_1 的第一个数据值最小,因此优先级队列根据 t_score_0, t_score_2 和 t_score_1 的方式排序队列。 下图则展现了进行 next 调用的时候,排序归并是如何进行的。通过图中我们可以看到,当进行第一次 next 调用时,排在队列首位的 t_score_0 将会被
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere5.0alphaDocument5.15.25.4v5document中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩