Apache ShardingSphere 5.4.1 DocumentShardingSphere-JDBC ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC layer. 1.1.2 ShardingSphere-Proxy ShardingSphere‐Proxy is a transparent database proxy, providing of standalone databases, enabling data security across underlying data sources. Re ad /w ri te S pl it ti ng Read/write splitting can be used to cope with business access with high stress. Sharding‐ ShardingSphere-JDBC ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC layer. With the client connecting directly to the database, it provides services in the form of0 码力 | 572 页 | 3.73 MB | 1 年前3
Apache ShardingSphere 5.2.1 DocumentShardingSphere-JDBC ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC layer. ShardingSphere-Proxy ShardingSphere‐Proxy is a transparent database proxy, providing and computing platform. Guar‐ antee the HA of your distributed database cluster with ShardingSphere’s Operator on Ku‐ bernetes, and the native HA of your existing data sources. Data Mi‐ gra‐ tion ShardingSphere-JDBC ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC layer. With the client connecting directly to the database, it provides services in the form of0 码力 | 523 页 | 4.51 MB | 1 年前3
Apache ShardingSphere v5.5.0 document. . . . . . . . . . . . . . . . . . . . . . . . . . . 580 xii 13.4.1 Single table Table or view %s does not exist. How to solve the exception? . . . . 580 13.5 DistSQL . . . . . . . . . . . . . . . ShardingSphere-JDBC ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC layer. 1.1.2 ShardingSphere-Proxy ShardingSphere‐Proxy is a transparent database proxy, providing of standalone databases, enabling data security across underlying data sources. Re ad /w ri te S pl it ti ng Read/write splitting can be used to cope with business access with high stress. Sharding‐0 码力 | 602 页 | 3.85 MB | 1 年前3
Apache ShardingSphere 5.2.0 DocumentShardingSphere-JDBC ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC layer. 1 Apache ShardingSphere document, v5.2.0 ShardingSphere-Proxy ShardingSphere‐Proxy services based on stateless ser‐ vices. At the same time, it can sense and use the underlying database’s HA solution to achieve its overall high availability. Data Migra‐ tion Data migration is the key isolation support for complex testing work. The obtained testing result can accurately reflect the system’s true capacity and performance. 1.1. What is ShardingSphere 2 Apache ShardingSphere document, v5.20 码力 | 483 页 | 4.27 MB | 1 年前3
Apache ShardingSphere 5.1.1 Documentbusiness more freely. 1.1. Introduction 4 Apache ShardingSphere document, v5.1.1 1.2 Solution S olutions/ Fea- tures • Distributed Database* Data Security Database Gateway Stress T esting Data Configuration Manual for more details. 2.2.2 Import Dependencies If the backend database is PostgreSQL, there’s no need for additional dependencies. If the backend database is MySQL, please download mysql‐connector‐java‐5 Build Manual for more details. 2.3.2 Import Dependencies If the backend database is PostgreSQL, there’s no need for additional dependencies. If the backend database is MySQL, please download mysql‐connector‐java‐50 码力 | 458 页 | 3.43 MB | 1 年前3
Apache ShardingSphere 中文文档 5.3.2社区,提供新颖思路和令人兴奋的功能。 8.1 数据分片 8.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方 用水平分片之后的数据库集 群,是 Apache ShardingSphere 数据分片模块的主要设计目标。 8.1.4 应用场景 海量数据高并发的 OLTP 场景 由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度的增加也将使得 磁盘访问的 IO 次数增加,进而导致查询性能的下降。通过 ShardingSphere 数据分片,按照某个业务维 度,将存放在单 String 分片逻辑表名称 • act ualDataSources (?) String 数据源名称,多个数据 源以逗号分隔 使用全部配置的数据源 sh ardingStrategy (?) S hardingStrateg yCon‐ figuration 分片策略 使用默认分片策略 keyGe nerateStrategy (?) KeyGenerato rConfig‐ uration0 码力 | 508 页 | 4.44 MB | 1 年前3
Apache ShardingSphere 5.1.2 Documentbusiness more freely. 1.1. Introduction 4 Apache ShardingSphere document, v5.1.2 1.2 Solution S olutions/ Fea- tures • Distributed Database* Data Security Database Gateway Stress T esting Data ShardingSphere document, v5.1.2 2.2.3 Import Dependencies If the backend database is PostgreSQL, there’s no need for additional dependencies. If the backend database is MySQL, please download mysql‐connector‐java‐5 more and more applications established in the new fields, prompt and push evolution of human society’s cooperation mode. Data is increasing explosively, the data storage and computing method are facing0 码力 | 503 页 | 3.66 MB | 1 年前3
Apache ShardingSphere 5.0.0 Documentbusiness more freely. 1.1. Introduction 4 Apache ShardingSphere document, v5.0.0 1.2 Solution S olutions/ Fea- tures • Distributed Database* Data Security Database Gateway Stress T esting Data /Users/ss/shardingsphere‐proxy‐bin/ 2.2.2 2. Import Dependencies If the backend database is PostgreSQL, there’s no need for additional dependencies. If the backend database is MySQL, please download mysql‐connector‐java‐5 /Users/ss/shardingsphere‐proxy‐bin/ 2.3.2 2. Import Dependencies If the backend database is PostgreSQL, there’s no need for additional dependencies. If the backend database is MySQL, please download mysql‐connector‐java‐50 码力 | 403 页 | 3.15 MB | 1 年前3
Apache ShardingSphere 中文文档 5.2.0社区,提供新颖思路和令人兴奋的功能。 3.1 数据分片 3.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方 用水平分片之后的数据库集 群,是 Apache ShardingSphere 数据分片模块的主要设计目标。 3.1.4 应用场景 海量数据高并发的 OLTP 场景 由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度的增加也将使得 磁盘访问的 IO 次数增加,进而导致查询性能的下降。通过 ShardingSphere 数据分片,按照某个业务维 度,将存放在单 Apache ShardingSphere document, v5.2.0 type: # 数据库发现类型,如:MySQL.MGR props (?): group-name: 92504d5b-6dec-11e8-91ea-246e9612aaf1 # 数据库发现类型必要参数,如 MGR 的 group-name 配置示例 databaseName: database_discovery_db0 码力 | 449 页 | 5.85 MB | 1 年前3
Apache ShardingSphere 中文文档 5.4.1社区,提供新颖思路和令人兴奋的功能。 8.1 数据分片 8.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方 用水平分片之后的数据库集 群,是 Apache ShardingSphere 数据分片模块的主要设计目标。 8.1.4 应用场景 海量数据高并发的 OLTP 场景 由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度的增加也将使得 磁盘访问的 IO 次数增加,进而导致查询性能的下降。通过 ShardingSphere 数据分片,按照某个业务维 度,将存放在单 String 分片逻辑表名称 • act ualDataSources (?) String 数据源名称,多个数据 源以逗号分隔 使用全部配置的数据源 sh ardingStrategy (?) S hardingStrateg yCon‐ figuration 分片策略 使用默认分片策略 keyGe nerateStrategy (?) KeyGenerato rConfig‐ uration0 码力 | 530 页 | 4.49 MB | 1 年前3
共 31 条
- 1
- 2
- 3
- 4













