积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(12)数据库中间件(12)

语言

全部中文(简体)(9)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.127 秒,为您找到相关结果约 12 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    运行测试用例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 7 技术参考 326 7.1 数据兼容性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 7.2 数据库网关 Apache ShardingSphere 是一款开源的分布式数据库生态项目,由 JDBC 和 Proxy 两款产品组成。其核心 采用微内核 + 可插拔架构,通过插件开放扩展功能。它提供多源异构数据库增强平台,进而围绕其上层 构建生态。 Apache ShardingSphere 设计哲学为 Database Plus,旨在构建异构数据库上层的标准和生态。它关注如 何充分合理地利用数据库的计算和存 gSphere 提供在单机数据库之上的分布式事务能力,可实现跨底层数据源的数据安全。 读 写 分离 读写分离,是应对高压力业务访问的手段之一。ShardingSphere 基于对 SQL 语义理解及底层 数据库拓扑感知能力,提供灵活、安全的读写分离能力,且可实现读访问的负载均衡。 高 可 用 高可用,是对数据存储计算平台的基本要求。ShardingSphere 基于无状态服务,提供高可用
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 12 技术参考 481 12.1 数据兼容性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 12.2 数据库网关 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 18 Apache ShardingSphere document 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 ix 12 技术参考 455 12.1 数据兼容性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 12.2 数据库网关 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 18 Apache ShardingSphere document 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 12 技术参考 434 12.1 数据兼容性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 12.2 数据库网关 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 18 Apache ShardingSphere document 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外,分库还能够用于有效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 数据分片 19 Apache ShardingSphere document, v5.0.0 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外,分库还能够用于有效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外,分库还能够用于有效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外,分库还能够用于有效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 孟浩然-Apache ShardingSphere 架构解析&应用实践

    SQL 方言和 数据库存储对接,用于打造异 构数据网关; 连接 连接是 ShardingSphere 的基础能 力,可以有效简化数据和应用之间 的连接。连接的设计要点在于强大 的数据库的兼容性,在应用和数据 之间搭建了一层与具体数据库实现 无关的桥梁,为增量能力提供了基 础。 增量 增量是 ShardingSphere 的主要能 力,在拦截访问数据库流量的前提 下,透明化的提供增量功能。增强
    0 码力 | 31 页 | 2.36 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere中文文档5.2v55.05.45.3alpha5.1浩然孟浩然架构解析应用实践
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩