积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(16)数据库中间件(16)

语言

全部中文(简体)(12)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.081 秒,为您找到相关结果约 16 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Mybatis 框架课程第二天

    传智播客——专注于 Java、.Net 和 Php、网页平面设计工程师的培训 北京市昌平区建材城西路金燕龙办公楼一层 电话:400-618-9090 Mybatis 框架课程第二天 第1章 回顾 1.1 自定义流程再分析 传智播客——专注于 Java、.Net 和 Php、网页平面设计工程师的培训 北京市昌平区建材城西路金燕龙办公楼一层 电话:400-618-9090 电话:400-618-9090 1.2 mybatis 环境搭建步骤 第一步:创建 maven 工程 第二步:导入坐标 第三步:编写必要代码(实体类和持久层接口) 第四步:编写 SqlMapConfig.xml 第五步:编写映射配置文件 第六步:编写测试类 第2章 基于代理 Dao 实现 CRUD 操作 使用要求: 1、持久层接口和持久层接口的映射配置必须在相同的包下 细节: resultType 属性: 用于指定结果集的类型。 parameterType 属性: 传智播客——专注于 Java、.Net 和 Php、网页平面设计工程师的培训 北京市昌平区建材城西路金燕龙办公楼一层 电话:400-618-9090 用于指定传入参数的类型。 sql 语句中使用#{}字符: 它代表占位符,相当于原来
    0 码力 | 27 页 | 1.21 MB | 1 年前
    3
  • pdf文档 MyBatis 框架尚硅谷 java 研究院版本:V 1.0

    ————————————————————————————— 33 更多 Java –大数据 –前端 –python 人工智能资料下载,可访问百度:尚硅谷官网 第 7 章:MyBatis 逆向工程 7.1 逆向工程简介 1) MyBatis Generator: 简称 MBG,是一个专门为 MyBatis 框架使用者定制的代码生成器, 可以快速的根据表生成对应的映射文件,接口,以及 bean 类。支持基本的增删改查, 复杂 sql 的定义需要我们手 工编写 官方文档地址 http://www.mybatis.org/generator/ 官方工程地址 https://github.com/mybatis/generator/releases 7.2 逆向工程的配置 1) 导入逆向工程的 jar 包 mybatis-generator-core-1.3.2.jar 2) 编写 MBG 的配置文件(重要几处配置) "http://mybatis.org/dtd/mybatis-generator-config_1_0.dtd">
    0 码力 | 44 页 | 926.54 KB | 1 年前
    3
  • pdf文档 传智播客 mybatis 框架课程讲义

    1.6.1 需求 实现以下功能: 根据用户 id 查询一个用户信息 根据用户名称模糊查询用户信息列表 添加用户 更新用户 删除用户 1.6.2 第一步:创建 java 工程 使用 eclipse 创建 java 工程,jdk 使用 1.7.0_72。 1.6.3 第二步:加入 jar 包 加入 mybatis 核心包、依赖包、数据驱动包。 1.6.4 第三步:log4j.properties 的实现对象 如 果将 mapper.xml 和 mapper 接 口的 名 称 保持 一 致 且放 在 一个 目 录 则 不用 在 sqlMapConfig.xml 中进行配置 8 Mybatis 逆向工程 使用官方网站的 mapper 自动生成工具 mybatis-generator-core-1.3.2 来生成 po 类和 mapper 映射文件。 8.1 第一步:mapper 生成配置文件: 生成的详细信息,注意改下几点: 1、 添加要生成的数据库表 2、 po 文件所在包路径 3、 mapper 文件所在包路径 配置文件如下: 详见 generatorSqlmapCustom 工程 8.2 第二步:使用 java 类生成 mapper 文件: Public void generator() throws Exception{ List warnings =
    0 码力 | 75 页 | 1.16 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。 适用于工程师在本地搭建 Apache ShardingSphere 环境。 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。它能够提 ShardingSphere 提供了多样化的功能,涵盖范围从数据库内核、数据库分布式到贴近数据库上 层的应用,为用户提供了大量的功能池。 功能并无边界,只要满足数据库服务和生态的共性需求即可,期待更多的开源工程师参与 Apache Shard‐ ingSphere 社区,提供新颖思路和令人兴奋的功能。 3.1 数据分片 3.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 据分片的标准解决方案。 3.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。 适用于工程师在本地搭建 Apache ShardingSphere 环境。 4.2 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。它能够提 ShardingSphere 提供了多样化的功能,涵盖范围从数据库内核、数据库分布式到贴近数据库上 层的应用,为用户提供了大量的功能池。 功能并无边界,只要满足数据库服务和生态的共性需求即可,期待更多的开源工程师参与 Apache Shard‐ ingSphere 社区,提供新颖思路和令人兴奋的功能。 8.1 数据分片 8.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 据分片的标准解决方案。 8.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。 适用于工程师在本地搭建 Apache ShardingSphere 环境。 4.2 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。它能够提 ShardingSphere 提供了多样化的功能,涵盖范围从数据库内核、数据库分布式到贴近数据库上 层的应用,为用户提供了大量的功能池。 功能并无边界,只要满足数据库服务和生态的共性需求即可,期待更多的开源工程师参与 Apache Shard‐ ingSphere 社区,提供新颖思路和令人兴奋的功能。 8.1 数据分片 8.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 据分片的标准解决方案。 8.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。 适用于工程师在本地搭建 Apache ShardingSphere 环境。 4.2 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。它能够提 ShardingSphere 提供了多样化的功能,涵盖范围从数据库内核、数据库分布式到贴近数据库上 层的应用,为用户提供了大量的功能池。 功能并无边界,只要满足数据库服务和生态的共性需求即可,期待更多的开源工程师参与 Apache Shard‐ ingSphere 社区,提供新颖思路和令人兴奋的功能。 8.1 数据分片 8.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 据分片的标准解决方案。 8.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    ShardingSphere document, v5.1.1 3.2 运行模式 3.2.1 背景 Apache ShardingSphere 是一套完善的产品,使用场景非常广泛。除生产环境的集群部署之外,还为工程 师在开发和自动化测试等场景提供相应的运行模式。Apache ShardingSphere 提供的 3 种运行模式分别 是内存模式、单机模式和集群模式。 3.2.2 内存模式 初始化配置或执行 法将元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。适用于工程师在本地搭建 Apache ShardingSphere 环境。 3.2.4 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。在真实部 ShardingSphere 的特点之一。在使用 4.x 及其之前版本时,开 发者虽然可以像使用原生数据库一样操作数据,但却需要通过本地文件或注册中心配置资源和规则。然 而,操作习惯变更,对于运维工程师并不友好。 DistSQL 让用户可以像操作数据库一样操作 Apache ShardingSphere,使其从面向开发人员的框架和中间 件转变为面向运维人员的数据库产品。 DistSQL 细分为
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    ShardingSphere document, v5.1.0 3.2 运行模式 3.2.1 背景 Apache ShardingSphere 是一套完善的产品,使用场景非常广泛。除生产环境的集群部署之外,还为工程 师在开发和自动化测试等场景提供相应的运行模式。Apache ShardingSphere 提供的 3 种运行模式分别 是内存模式、单机模式和集群模式。 3.2.2 内存模式 初始化配置或执行 法将元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。适用于工程师在本地搭建 Apache ShardingSphere 环境。 3.2.4 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。在真实部 ShardingSphere 的特点之一。在使用 4.x 及其之前版本时,开 发者虽然可以像使用原生数据库一样操作数据,但却需要通过本地文件或注册中心配置资源和规则。然 而,操作习惯变更,对于运维工程师并不友好。 DistSQL 让用户可以像操作数据库一样操作 Apache ShardingSphere,使其从面向开发人员的框架和中间 件转变为面向运维人员的数据库产品。 DistSQL 细分为
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere ElasticJob 中文文档 2023 年 11 月 01 日

    Apache ShardingSphere 的子项目。欢迎通过邮件列表参与讨论。 1 1 简介 使用 ElasticJob 能够让开发工程师不再担心任务的线性吞吐量提升等非功能需求,使他们能够更加专注 于面向业务编码设计;同时,它也能够解放运维工程师,使他们不必再担心任务的可用性和相关管理需 求,只通过轻松的增加服务节点即可达到自动化运维的目的。 ElasticJob 定位为轻量级无中心化解决方案,使用
    0 码力 | 98 页 | 1.97 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
Mybatis框架课程第二二天第二天MyBatis硅谷java研究研究院版本1.0传智播mybatis讲义ApacheShardingSphere中文文档5.25.45.3v55.05.1ElasticJob20231101
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩