 Apache ShardingSphere v5.5.0 中文文档Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 document TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='2000' -- 属性:阻塞队列大小 ))) ); 使用手册 MySQL 使用手册 环境要求 支持的 MySQL 版本:5.1.15 ~ 8.0.x。 权限要求 1. 源端开启 binlog MySQL 5.7 my 类型。 TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='2000' -- 属性:阻塞队列大小 ))) ); 9.2. ShardingSphere-Proxy 400 Apache ShardingSphere document CDC Client 手册 CDC Client0 码力 | 557 页 | 4.61 MB | 1 年前3 Apache ShardingSphere v5.5.0 中文文档Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 document TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='2000' -- 属性:阻塞队列大小 ))) ); 使用手册 MySQL 使用手册 环境要求 支持的 MySQL 版本:5.1.15 ~ 8.0.x。 权限要求 1. 源端开启 binlog MySQL 5.7 my 类型。 TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='2000' -- 属性:阻塞队列大小 ))) ); 9.2. ShardingSphere-Proxy 400 Apache ShardingSphere document CDC Client 手册 CDC Client0 码力 | 557 页 | 4.61 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.0.0-alphaShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的 个数据结果集的当前游标指向的数据值进行排序,并放入优先级队列,t_score_0 的第一个数据值 最大,t_score_2 的第一个数据值次之,t_score_1 的第一个数据值最小,因此优先级队列根据 t_score_0, t_score_2 和 t_score_1 的方式排序队列。 下图则展现了进行 next 调用的时候,排序归并是如何进行的。通过图中我们可以看到,当进行第一次 next 调用时,排在队列首位的 t_score_0 t_score_0 将会被弹出队列,并且将当前游标指向的数据值(也就是 100)返回 至查询客户端,并且将游标下移一位之后,重新放入优先级队列。而优先级队列也会根据 t_score_0 的当 前数据结果集指向游标的数据值(这里是 90)进行排序,根据当前数值,t_score_0 排列在队列的最后一 3.1. 数据分片 42 Apache ShardingSphere document, v5.0.0-beta0 码力 | 301 页 | 3.44 MB | 1 年前3 Apache ShardingSphere 中文文档 5.0.0-alphaShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的 个数据结果集的当前游标指向的数据值进行排序,并放入优先级队列,t_score_0 的第一个数据值 最大,t_score_2 的第一个数据值次之,t_score_1 的第一个数据值最小,因此优先级队列根据 t_score_0, t_score_2 和 t_score_1 的方式排序队列。 下图则展现了进行 next 调用的时候,排序归并是如何进行的。通过图中我们可以看到,当进行第一次 next 调用时,排在队列首位的 t_score_0 t_score_0 将会被弹出队列,并且将当前游标指向的数据值(也就是 100)返回 至查询客户端,并且将游标下移一位之后,重新放入优先级队列。而优先级队列也会根据 t_score_0 的当 前数据结果集指向游标的数据值(这里是 90)进行排序,根据当前数值,t_score_0 排列在队列的最后一 3.1. 数据分片 42 Apache ShardingSphere document, v5.0.0-beta0 码力 | 301 页 | 3.44 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.0.0不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 而最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 结束 sh bin/stop.sh 应用配置项 应用现有配置项如下,相应的配置可在 conf/server.yaml 中修改: 名称 说明 默认值 blockQueueSize 数据传输通道队列大小 10000 workerThread 工作线程池大小,允许同时运行的迁移任务线程数 40 5.4.3 使用手册 使用手册 环境要求 纯 JAVA 开发,JDK 建议 1.8 以上版本。 ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 385 页 | 4.26 MB | 1 年前3 Apache ShardingSphere 中文文档 5.0.0不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 而最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 结束 sh bin/stop.sh 应用配置项 应用现有配置项如下,相应的配置可在 conf/server.yaml 中修改: 名称 说明 默认值 blockQueueSize 数据传输通道队列大小 10000 workerThread 工作线程池大小,允许同时运行的迁移任务线程数 40 5.4.3 使用手册 使用手册 环境要求 纯 JAVA 开发,JDK 建议 1.8 以上版本。 ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 385 页 | 4.26 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.1.1Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 output 环节。如果不配置则 默认使用 MEMORY 类型 type: # 算法类型。可选项:MEMORY props: # 算法属性 block-queue-size: # 属性:阻塞队列大小 completionDetector: # 作业是否接近完成检测算法。如果不配置则无法自动进行后续步骤,可以通 过 DistSQL 手动操作。 type: # 算法类型。可选项:IDLE ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 409 页 | 4.47 MB | 1 年前3 Apache ShardingSphere 中文文档 5.1.1Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 output 环节。如果不配置则 默认使用 MEMORY 类型 type: # 算法类型。可选项:MEMORY props: # 算法属性 block-queue-size: # 属性:阻塞队列大小 completionDetector: # 作业是否接近完成检测算法。如果不配置则无法自动进行后续步骤,可以通 过 DistSQL 手动操作。 type: # 算法类型。可选项:IDLE ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 409 页 | 4.47 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.2.0Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='10000' -- 属性:阻塞队列大小 ))) ); DistSQL 示例:配置 READ 限流。 CREATE MIGRATION PROCESS CONFIGURATION ( READ( 4.2. ShardingSphere-Proxy ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 449 页 | 5.85 MB | 1 年前3 Apache ShardingSphere 中文文档 5.2.0Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='10000' -- 属性:阻塞队列大小 ))) ); DistSQL 示例:配置 READ 限流。 CREATE MIGRATION PROCESS CONFIGURATION ( READ( 4.2. ShardingSphere-Proxy ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 449 页 | 5.85 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.4.1Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 类型。 TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='2000' -- 属性:阻塞队列大小 ))) ); DistSQL 示例:配置 READ 限流。 ALTER MIGRATION RULE ( READ( RATE_LIMITER (TYPE(NAME='QPS',P ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 530 页 | 4.49 MB | 1 年前3 Apache ShardingSphere 中文文档 5.4.1Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 类型。 TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='2000' -- 属性:阻塞队列大小 ))) ); DistSQL 示例:配置 READ 限流。 ALTER MIGRATION RULE ( READ( RATE_LIMITER (TYPE(NAME='QPS',P ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 530 页 | 4.49 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.1.0Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 output 环节。如果不配置则 默认使用 MEMORY 类型 type: # 算法类型。可选项:MEMORY props: # 算法属性 block-queue-size: # 属性:阻塞队列大小 completionDetector: # 作业是否接近完成检测算法。如果不配置则无法自动进行后续步骤,可以通 过 DistSQL 手动操作。 type: # 算法类型。可选项:IDLE ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 406 页 | 4.40 MB | 1 年前3 Apache ShardingSphere 中文文档 5.1.0Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 output 环节。如果不配置则 默认使用 MEMORY 类型 type: # 算法类型。可选项:MEMORY props: # 算法属性 block-queue-size: # 属性:阻塞队列大小 completionDetector: # 作业是否接近完成检测算法。如果不配置则无法自动进行后续步骤,可以通 过 DistSQL 手动操作。 type: # 算法类型。可选项:IDLE ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 406 页 | 4.40 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.3.2Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 类型。 TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='2000' -- 属性:阻塞队列大小 ))) ); DistSQL 示例:配置 READ 限流。 ALTER MIGRATION RULE ( READ( RATE_LIMITER (TYPE(NAME='QPS',P ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 508 页 | 4.44 MB | 1 年前3 Apache ShardingSphere 中文文档 5.3.2Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 类型。 TYPE( -- 算法类型。可选项:MEMORY NAME='MEMORY', PROPERTIES( -- 算法属性 'block-queue-size'='2000' -- 属性:阻塞队列大小 ))) ); DistSQL 示例:配置 READ 限流。 ALTER MIGRATION RULE ( READ( RATE_LIMITER (TYPE(NAME='QPS',P ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 508 页 | 4.44 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.1.2Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 output 环节。如果不配置则 默认使用 MEMORY 类型 type: # 算法类型。可选项:MEMORY props: # 算法属性 block-queue-size: # 属性:阻塞队列大小 completionDetector: # 作业是否接近完成检测算法。如果不配置则无法自动进行后续步骤,可以通 过 DistSQL 手动操作。 type: # 算法类型。可选项:IDLE ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 446 页 | 4.67 MB | 1 年前3 Apache ShardingSphere 中文文档 5.1.2Available)保证分布式事务参与方不一定同时在线; • 柔性状态(Soft state)则允许系统状态更新有一定的延时,这个延时对客户来说不一定能够察觉; • 最终一致性(Eventually consistent)通常是通过消息传递的方式保证系统的最终一致性。 在 ACID 事务中对隔离性的要求很高,在事务执行过程中,必须将所有的资源锁定。柔性事务的理念则是 通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求,来换取系统吞吐量 output 环节。如果不配置则 默认使用 MEMORY 类型 type: # 算法类型。可选项:MEMORY props: # 算法属性 block-queue-size: # 属性:阻塞队列大小 completionDetector: # 作业是否接近完成检测算法。如果不配置则无法自动进行后续步骤,可以通 过 DistSQL 手动操作。 type: # 算法类型。可选项:IDLE ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。每次获取下一条数据时,只需将队列顶端结果集的游 标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。 通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。图中展示 了 3 张表返回的0 码力 | 446 页 | 4.67 MB | 1 年前3
 Apache ShardingSphere ElasticJob 中文文档 2023 年 11 月 01 日记录作业异常日志,但不中断作业执行 是 是 抛出异常策略 抛出系统异常并中断作业执行 是 忽略异常策略 忽略系统异常且不中断作业执行 是 邮件通知策略 发送邮件消息通知,但不中断作业执行 是 企业微信通知策 略 发送企业微信消息通知,但不中断作业 执行 是 钉钉通知策略 发送钉钉消息通知,但不中断作业执行 是 记录日志策略 public class JobDemo { public static void main(String[] 记录作业异常日志,但不中断作业执行 是 是 抛出异常策略 抛出系统异常并中断作业执行 是 忽略异常策略 忽略系统异常且不中断作业执行 是 邮件通知策略 发送邮件消息通知,但不中断作业执行 是 企业微信通知策 略 发送企业微信消息通知,但不中断作业 执行 是 钉钉通知策略 发送钉钉消息通知,但不中断作业执行 是 记录日志策略 elasticjob: regCenter: ... jobs: ... jobErrorHandlerType: 记录作业异常日志,但不中断作业执行 是 是 抛出异常策略 抛出系统异常并中断作业执行 是 忽略异常策略 忽略系统异常且不中断作业执行 是 邮件通知策略 发送邮件消息通知,但不中断作业执行 是 企业微信通知策 略 发送企业微信消息通知,但不中断作业 执行 是 钉钉通知策略 发送钉钉消息通知,但不中断作业执行 是 以下示例用于展示如何通过 Spring 命名空间配置错误处理策略。0 码力 | 98 页 | 1.97 MB | 1 年前3 Apache ShardingSphere ElasticJob 中文文档 2023 年 11 月 01 日记录作业异常日志,但不中断作业执行 是 是 抛出异常策略 抛出系统异常并中断作业执行 是 忽略异常策略 忽略系统异常且不中断作业执行 是 邮件通知策略 发送邮件消息通知,但不中断作业执行 是 企业微信通知策 略 发送企业微信消息通知,但不中断作业 执行 是 钉钉通知策略 发送钉钉消息通知,但不中断作业执行 是 记录日志策略 public class JobDemo { public static void main(String[] 记录作业异常日志,但不中断作业执行 是 是 抛出异常策略 抛出系统异常并中断作业执行 是 忽略异常策略 忽略系统异常且不中断作业执行 是 邮件通知策略 发送邮件消息通知,但不中断作业执行 是 企业微信通知策 略 发送企业微信消息通知,但不中断作业 执行 是 钉钉通知策略 发送钉钉消息通知,但不中断作业执行 是 记录日志策略 elasticjob: regCenter: ... jobs: ... jobErrorHandlerType: 记录作业异常日志,但不中断作业执行 是 是 抛出异常策略 抛出系统异常并中断作业执行 是 忽略异常策略 忽略系统异常且不中断作业执行 是 邮件通知策略 发送邮件消息通知,但不中断作业执行 是 企业微信通知策 略 发送企业微信消息通知,但不中断作业 执行 是 钉钉通知策略 发送钉钉消息通知,但不中断作业执行 是 以下示例用于展示如何通过 Spring 命名空间配置错误处理策略。0 码力 | 98 页 | 1.97 MB | 1 年前3
共 12 条
- 1
- 2













