积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(16)数据库中间件(16)

语言

全部中文(简体)(12)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.106 秒,为您找到相关结果约 16 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。 适用于工程师在本地搭建 Apache ShardingSphere 环境。 4.2 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。它能够提 ShardingSphere 提供了多样化的功能,涵盖范围从数据库内核、数据库分布式到贴近数据库上 层的应用,为用户提供了大量的功能池。 功能并无边界,只要满足数据库服务和生态的共性需求即可,期待更多的开源工程师参与 Apache Shard‐ ingSphere 社区,提供新颖思路和令人兴奋的功能。 8.1 数据分片 8.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。 适用于工程师在本地搭建 Apache ShardingSphere 环境。 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。它能够提 ShardingSphere 提供了多样化的功能,涵盖范围从数据库内核、数据库分布式到贴近数据库上 层的应用,为用户提供了大量的功能池。 功能并无边界,只要满足数据库服务和生态的共性需求即可,期待更多的开源工程师参与 Apache Shard‐ ingSphere 社区,提供新颖思路和令人兴奋的功能。 3.1 数据分片 3.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。 适用于工程师在本地搭建 Apache ShardingSphere 环境。 4.2 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。它能够提 ShardingSphere 提供了多样化的功能,涵盖范围从数据库内核、数据库分布式到贴近数据库上 层的应用,为用户提供了大量的功能池。 功能并无边界,只要满足数据库服务和生态的共性需求即可,期待更多的开源工程师参与 Apache Shard‐ ingSphere 社区,提供新颖思路和令人兴奋的功能。 8.1 数据分片 8.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。 适用于工程师在本地搭建 Apache ShardingSphere 环境。 4.2 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。它能够提 ShardingSphere 提供了多样化的功能,涵盖范围从数据库内核、数据库分布式到贴近数据库上 层的应用,为用户提供了大量的功能池。 功能并无边界,只要满足数据库服务和生态的共性需求即可,期待更多的开源工程师参与 Apache Shard‐ ingSphere 社区,提供新颖思路和令人兴奋的功能。 8.1 数据分片 8.1.1 背景 传统的将数据集中存储至单一节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足海量 都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    ShardingSphere document, v5.1.1 3.2 运行模式 3.2.1 背景 Apache ShardingSphere 是一套完善的产品,使用场景非常广泛。除生产环境的集群部署之外,还为工程 师在开发和自动化测试等场景提供相应的运行模式。Apache ShardingSphere 提供的 3 种运行模式分别 是内存模式、单机模式和集群模式。 3.2.2 内存模式 初始化配置或执行 法将元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。适用于工程师在本地搭建 Apache ShardingSphere 环境。 3.2.4 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。在真实部 ShardingSphere 的特点之一。在使用 4.x 及其之前版本时,开 发者虽然可以像使用原生数据库一样操作数据,但却需要通过本地文件或注册中心配置资源和规则。然 而,操作习惯变更,对于运维工程师并不友好。 DistSQL 让用户可以像操作数据库一样操作 Apache ShardingSphere,使其从面向开发人员的框架和中间 件转变为面向运维人员的数据库产品。 DistSQL 细分为
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    ShardingSphere document, v5.1.0 3.2 运行模式 3.2.1 背景 Apache ShardingSphere 是一套完善的产品,使用场景非常广泛。除生产环境的集群部署之外,还为工程 师在开发和自动化测试等场景提供相应的运行模式。Apache ShardingSphere 提供的 3 种运行模式分别 是内存模式、单机模式和集群模式。 3.2.2 内存模式 初始化配置或执行 法将元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。适用于工程师在本地搭建 Apache ShardingSphere 环境。 3.2.4 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。在真实部 ShardingSphere 的特点之一。在使用 4.x 及其之前版本时,开 发者虽然可以像使用原生数据库一样操作数据,但却需要通过本地文件或注册中心配置资源和规则。然 而,操作习惯变更,对于运维工程师并不友好。 DistSQL 让用户可以像操作数据库一样操作 Apache ShardingSphere,使其从面向开发人员的框架和中间 件转变为面向运维人员的数据库产品。 DistSQL 细分为
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    ShardingSphere document, v5.1.2 3.2 运行模式 3.2.1 背景 Apache ShardingSphere 是一套完善的产品,使用场景非常广泛。除生产环境的集群部署之外,还为工程 师在开发和自动化测试等场景提供相应的运行模式。Apache ShardingSphere 提供的 3 种运行模式分别 是内存模式、单机模式和集群模式。 3.2.2 内存模式 初始化配置或执行 法将元数据同步至多个 Apache ShardingSphere 实例,无 法在集群环境中相互感知。通过某一实例更新元数据之后,会导致其他实例由于获取不到最新的元数据 而产生不一致的错误。适用于工程师在本地搭建 Apache ShardingSphere 环境。 3.2.4 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。在真实部 ShardingSphere 的特点之一。在使用 4.x 及其之前版本时,开 发者虽然可以像使用原生数据库一样操作数据,但却需要通过本地文件或注册中心配置资源和规则。然 而,操作习惯变更,对于运维工程师并不友好。 DistSQL 让用户可以像操作数据库一样操作 Apache ShardingSphere,使其从面向开发人员的框架和中间 件转变为面向运维人员的数据库产品。 DistSQL 细分为
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    ShardingSphere‐Proxy 时,开发者虽然可以像使用数据库一样操作数据,但却需要通过 YAML 文件(或注册中心)配置资源和 规则。然而,YAML 格式的展现形式,以及注册中心动态修改带来的操作习惯变更,对于运维工程师并不 友好。 DistSQL 让用户可以像操作数据库一样操作 Apache ShardingSphere,使其从面向开发人员的框架和中间 件转变为面向运维人员的数据库产品。 DistSQL ShardingSphere 提供了多样化的功能,涵盖范围从数据库内核、数据库分布式到贴近数据库上 层的应用,为用户提供了大量的功能池。 功能并无边界,只要满足数据库服务和生态的共性需求即可,期待更多的开源工程师参与 Apache Shard‐ ingSphere 社区,提供新颖思路和令人兴奋的功能。 4.1 数据库兼容 4.1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是分库分表的标准解决方案。 3.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分库分表之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就 是其中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的分表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 Schema 的命令发送至数据库中。 路由引擎的整体结构划分如下图。 3.1. 数据分片 30 Apache ShardingSphere document, v5.0.0-beta 改写引擎 工程师面向逻辑库与逻辑表书写的 SQL,并不能够直接在真实的数据库中执行,SQL 改写用于将逻辑 SQL 改写为在真实数据库中可以正确执行的 SQL。它包括正确性改写和优化改写两部分。 正确性改写
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Mybatis 框架课程第二天

    传智播客——专注于 Java、.Net 和 Php、网页平面设计工程师的培训 北京市昌平区建材城西路金燕龙办公楼一层 电话:400-618-9090 Mybatis 框架课程第二天 第1章 回顾 1.1 自定义流程再分析 传智播客——专注于 Java、.Net 和 Php、网页平面设计工程师的培训 北京市昌平区建材城西路金燕龙办公楼一层 电话:400-618-9090 电话:400-618-9090 1.2 mybatis 环境搭建步骤 第一步:创建 maven 工程 第二步:导入坐标 第三步:编写必要代码(实体类和持久层接口) 第四步:编写 SqlMapConfig.xml 第五步:编写映射配置文件 第六步:编写测试类 第2章 基于代理 Dao 实现 CRUD 操作 使用要求: 1、持久层接口和持久层接口的映射配置必须在相同的包下 细节: resultType 属性: 用于指定结果集的类型。 parameterType 属性: 传智播客——专注于 Java、.Net 和 Php、网页平面设计工程师的培训 北京市昌平区建材城西路金燕龙办公楼一层 电话:400-618-9090 用于指定传入参数的类型。 sql 语句中使用#{}字符: 它代表占位符,相当于原来
    0 码力 | 27 页 | 1.21 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSpherev55.0中文文档5.25.45.35.1alphaMybatis框架课程第二二天第二天
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩