 Apache ShardingSphere ElasticJob 中文文档 2023 年 11 月 01 日平扩展的任务处理系统。 5.2.1 分片 ElasticJob 中任务分片项的概念,使得任务可以在分布式的环境下运行,每台任务服务器只运行分配给该 服务器的分片。随着服务器的增加或宕机,ElasticJob 会近乎实时的感知服务器数量的变更,从而重新为 分布式的任务服务器分配更加合理的任务分片项,使得任务可以随着资源的增加而提升效率。 任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的服务器分别执行某一个 b 根据触发时的分布式作业执行的不同状况来决 定失效转移的执行时机。 通知执行 当其他服务器感知到有失效转移的作业需要处理时,且该作业服务器已经完成了本次任务,则会实时的 拉取待失效转移的分片项,并开始补偿执行。也称为实时执行。 问询执行 作业服务在本次任务执行结束后,会向注册中心问询待执行的失效转移分片项,如果有,则开始补偿执 行。也称为异步执行。 5.3.3 适用场景 开启失效转移功能,ElasticJob 会监控作业每一分片的执行状态,并将其写入注册中心,供其他节点感知。 在一次运行耗时较长且间隔较长的作业场景,失效转移是提升作业运行实时性的有效手段;对于间隔较 短的作业,会产生大量与注册中心的网络通信,对集群的性能产生影响。而且间隔较短的作业并未见得 关注单次作业的实时性,可以通过下次作业执行的重分片使所有的分片正确执行,因此不建议短间隔作 业开启失效转移。 另外需要注意的是,作业本身的幂等性,是保证失效转移正确性的前提。0 码力 | 98 页 | 1.97 MB | 1 年前3 Apache ShardingSphere ElasticJob 中文文档 2023 年 11 月 01 日平扩展的任务处理系统。 5.2.1 分片 ElasticJob 中任务分片项的概念,使得任务可以在分布式的环境下运行,每台任务服务器只运行分配给该 服务器的分片。随着服务器的增加或宕机,ElasticJob 会近乎实时的感知服务器数量的变更,从而重新为 分布式的任务服务器分配更加合理的任务分片项,使得任务可以随着资源的增加而提升效率。 任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的服务器分别执行某一个 b 根据触发时的分布式作业执行的不同状况来决 定失效转移的执行时机。 通知执行 当其他服务器感知到有失效转移的作业需要处理时,且该作业服务器已经完成了本次任务,则会实时的 拉取待失效转移的分片项,并开始补偿执行。也称为实时执行。 问询执行 作业服务在本次任务执行结束后,会向注册中心问询待执行的失效转移分片项,如果有,则开始补偿执 行。也称为异步执行。 5.3.3 适用场景 开启失效转移功能,ElasticJob 会监控作业每一分片的执行状态,并将其写入注册中心,供其他节点感知。 在一次运行耗时较长且间隔较长的作业场景,失效转移是提升作业运行实时性的有效手段;对于间隔较 短的作业,会产生大量与注册中心的网络通信,对集群的性能产生影响。而且间隔较短的作业并未见得 关注单次作业的实时性,可以通过下次作业执行的重分片使所有的分片正确执行,因此不建议短间隔作 业开启失效转移。 另外需要注意的是,作业本身的幂等性,是保证失效转移正确性的前提。0 码力 | 98 页 | 1.97 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.2.0. . . . . 17 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.5 相关参考 . . . . . . . . 提供基于数据全场景的迁移能力,可 应对业务数据量激增的场景。 联 邦 查询 联邦查询,是面对复杂数据环境下利用数据的有效手段之一。ShardingSphere 提供跨数据源 的复杂数据查询分析能力,简化并提升数据使用体验。 数 据 加密 数据加密,是保证数据安全的基本手段。ShardingSphere 提供一套完整的、透明化、安全的、 低改造成本的数据加密解决方案。 影 子 库 为应用提供标准化的连接方式。 1.2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 1.2. 设计哲学 4 Apache ShardingSphere document, v5.2.0 1.2.3 可插拔:构建数据库功能生态 Apache0 码力 | 449 页 | 5.85 MB | 1 年前3 Apache ShardingSphere 中文文档 5.2.0. . . . . 17 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.5 相关参考 . . . . . . . . 提供基于数据全场景的迁移能力,可 应对业务数据量激增的场景。 联 邦 查询 联邦查询,是面对复杂数据环境下利用数据的有效手段之一。ShardingSphere 提供跨数据源 的复杂数据查询分析能力,简化并提升数据使用体验。 数 据 加密 数据加密,是保证数据安全的基本手段。ShardingSphere 提供一套完整的、透明化、安全的、 低改造成本的数据加密解决方案。 影 子 库 为应用提供标准化的连接方式。 1.2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 1.2. 设计哲学 4 Apache ShardingSphere document, v5.2.0 1.2.3 可插拔:构建数据库功能生态 Apache0 码力 | 449 页 | 5.85 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.4.1. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 Apache ShardingSphere 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 接入端,可以满足高并发的 OLTP 场景下的性能要求。 海量数据实时分析 OLAP 场景 在传统的数据库架构中,如果用户想要进行数据分析,需要先使用 ETL 工具,将数据同步至数据平台中, 然后再进行数据分析,使用 ETL 工具会导致数据分析的实效性大打折扣。ShardingSphere‐Proxy 提供静 态入口以及异构语言的支持,独立于应用程序部署,适用于实时分析的 OLAP 场景。 8.1.5 相关参考0 码力 | 530 页 | 4.49 MB | 1 年前3 Apache ShardingSphere 中文文档 5.4.1. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 Apache ShardingSphere 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 接入端,可以满足高并发的 OLTP 场景下的性能要求。 海量数据实时分析 OLAP 场景 在传统的数据库架构中,如果用户想要进行数据分析,需要先使用 ETL 工具,将数据同步至数据平台中, 然后再进行数据分析,使用 ETL 工具会导致数据分析的实效性大打折扣。ShardingSphere‐Proxy 提供静 态入口以及异构语言的支持,独立于应用程序部署,适用于实时分析的 OLAP 场景。 8.1.5 相关参考0 码力 | 530 页 | 4.49 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.3.2. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 Apache ShardingSphere 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 接入端,可以满足高并发的 OLTP 场景下的性能要求。 海量数据实时分析 OLAP 场景 在传统的数据库架构中,如果用户想要进行数据分析,需要先使用 ETL 工具,将数据同步至数据平台中, 然后再进行数据分析,使用 ETL 工具会导致数据分析的实效性大打折扣。ShardingSphere‐Proxy 提供静 态入口以及异构语言的支持,独立于应用程序部署,适用于实时分析的 OLAP 场景。 8.1.5 相关参考0 码力 | 508 页 | 4.44 MB | 1 年前3 Apache ShardingSphere 中文文档 5.3.2. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 Apache ShardingSphere 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 接入端,可以满足高并发的 OLTP 场景下的性能要求。 海量数据实时分析 OLAP 场景 在传统的数据库架构中,如果用户想要进行数据分析,需要先使用 ETL 工具,将数据同步至数据平台中, 然后再进行数据分析,使用 ETL 工具会导致数据分析的实效性大打折扣。ShardingSphere‐Proxy 提供静 态入口以及异构语言的支持,独立于应用程序部署,适用于实时分析的 OLAP 场景。 8.1.5 相关参考0 码力 | 508 页 | 4.44 MB | 1 年前3
 Apache ShardingSphere v5.5.0 中文文档. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 Apache ShardingSphere 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 接入端,可以满足高并发的 OLTP 场景下的性能要求。 海量数据实时分析 OLAP 场景 在传统的数据库架构中,如果用户想要进行数据分析,需要先使用 ETL 工具,将数据同步至数据平台中, 然后再进行数据分析,使用 ETL 工具会导致数据分析的实效性大打折扣。ShardingSphere‐Proxy 提供静 态入口以及异构语言的支持,独立于应用程序部署,适用于实时分析的 OLAP 场景。 8.1.5 相关参考0 码力 | 557 页 | 4.61 MB | 1 年前3 Apache ShardingSphere v5.5.0 中文文档. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 Apache ShardingSphere 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 接入端,可以满足高并发的 OLTP 场景下的性能要求。 海量数据实时分析 OLAP 场景 在传统的数据库架构中,如果用户想要进行数据分析,需要先使用 ETL 工具,将数据同步至数据平台中, 然后再进行数据分析,使用 ETL 工具会导致数据分析的实效性大打折扣。ShardingSphere‐Proxy 提供静 态入口以及异构语言的支持,独立于应用程序部署,适用于实时分析的 OLAP 场景。 8.1.5 相关参考0 码力 | 557 页 | 4.61 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.0.0-alpha测试过程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 sysbench 测试用例分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 附录 1 . . . . . . . . . . . . ShardingSphere document, v5.0.0-beta 自动化执行引擎将连接模式的选择粒度细化至每一次 SQL 的操作。针对每次 SQL 请求,自动化执行引擎 都将根据其路由结果,进行实时的演算和权衡,并自主地采用恰当的连接模式执行,以达到资源控制和 效率的最优平衡。针对自动化的执行引擎,用户只需配置 maxConnectionSizePerQuery 即可,该参数表 示一次查询时每个数据库所允许使用的最大连接数。 ,还能够提升系统的可用性,可以达到在任何 一个数据库宕机,甚至磁盘物理损坏的情况下仍然不影响系统的正常运行。 与将数据根据分片键打散至各个数据节点的水平分片不同,读写分离则是根据 SQL 语义的分析,将读操 作和写操作分别路由至主库与从库。 读写分离的数据节点中的数据内容是一致的,而水平分片的每个数据节点的数据内容却并不相同。将水 平分片和读写分离联合使用,能够更加有效的提升系统性能。0 码力 | 301 页 | 3.44 MB | 1 年前3 Apache ShardingSphere 中文文档 5.0.0-alpha测试过程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 sysbench 测试用例分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 附录 1 . . . . . . . . . . . . ShardingSphere document, v5.0.0-beta 自动化执行引擎将连接模式的选择粒度细化至每一次 SQL 的操作。针对每次 SQL 请求,自动化执行引擎 都将根据其路由结果,进行实时的演算和权衡,并自主地采用恰当的连接模式执行,以达到资源控制和 效率的最优平衡。针对自动化的执行引擎,用户只需配置 maxConnectionSizePerQuery 即可,该参数表 示一次查询时每个数据库所允许使用的最大连接数。 ,还能够提升系统的可用性,可以达到在任何 一个数据库宕机,甚至磁盘物理损坏的情况下仍然不影响系统的正常运行。 与将数据根据分片键打散至各个数据节点的水平分片不同,读写分离则是根据 SQL 语义的分析,将读操 作和写操作分别路由至主库与从库。 读写分离的数据节点中的数据内容是一致的,而水平分片的每个数据节点的数据内容却并不相同。将水 平分片和读写分离联合使用,能够更加有效的提升系统性能。0 码力 | 301 页 | 3.44 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.1.1数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 。 4.2.2 挑战 管控的挑战,在于对集群的集中化管理的统一管理能力以及在单点出现故障时精细化的操作能力。 集中化管理的挑战体现在将包括数据库存储节点和中间件计算节点的状态统一管理,并且能够实时的探 测到分布式环境下最新的变动情况,进一步为集群的控制和调度提供依据。 面对超负荷的流量下,针对某一节点进行熔断和限流,以保证整个数据库集群得以继续运行,是分布式 系统下对单一节点控制能力的挑战。0 码力 | 409 页 | 4.47 MB | 1 年前3 Apache ShardingSphere 中文文档 5.1.1数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 。 4.2.2 挑战 管控的挑战,在于对集群的集中化管理的统一管理能力以及在单点出现故障时精细化的操作能力。 集中化管理的挑战体现在将包括数据库存储节点和中间件计算节点的状态统一管理,并且能够实时的探 测到分布式环境下最新的变动情况,进一步为集群的控制和调度提供依据。 面对超负荷的流量下,针对某一节点进行熔断和限流,以保证整个数据库集群得以继续运行,是分布式 系统下对单一节点控制能力的挑战。0 码力 | 409 页 | 4.47 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.1.0数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 。 4.2.2 挑战 管控的挑战,在于对集群的集中化管理的统一管理能力以及在单点出现故障时精细化的操作能力。 集中化管理的挑战体现在将包括数据库存储节点和中间件计算节点的状态统一管理,并且能够实时的探 测到分布式环境下最新的变动情况,进一步为集群的控制和调度提供依据。 面对超负荷的流量下,针对某一节点进行熔断和限流,以保证整个数据库集群得以继续运行,是分布式 系统下对单一节点控制能力的挑战。0 码力 | 406 页 | 4.40 MB | 1 年前3 Apache ShardingSphere 中文文档 5.1.0数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 。 4.2.2 挑战 管控的挑战,在于对集群的集中化管理的统一管理能力以及在单点出现故障时精细化的操作能力。 集中化管理的挑战体现在将包括数据库存储节点和中间件计算节点的状态统一管理,并且能够实时的探 测到分布式环境下最新的变动情况,进一步为集群的控制和调度提供依据。 面对超负荷的流量下,针对某一节点进行熔断和限流,以保证整个数据库集群得以继续运行,是分布式 系统下对单一节点控制能力的挑战。0 码力 | 406 页 | 4.40 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.0.0数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 ,还能够提升系统的可用性,可以达到在任何 一个数据库宕机,甚至磁盘物理损坏的情况下仍然不影响系统的正常运行。 与将数据根据分片键打散至各个数据节点的水平分片不同,读写分离则是根据 SQL 语义的分析,将读操 作和写操作分别路由至主库与从库。 4.4. 读写分离 41 Apache ShardingSphere document, v5.0.0 读写分离的数据节点中的数据内容是一致的,而0 码力 | 385 页 | 4.26 MB | 1 年前3 Apache ShardingSphere 中文文档 5.0.0数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 ,还能够提升系统的可用性,可以达到在任何 一个数据库宕机,甚至磁盘物理损坏的情况下仍然不影响系统的正常运行。 与将数据根据分片键打散至各个数据节点的水平分片不同,读写分离则是根据 SQL 语义的分析,将读操 作和写操作分别路由至主库与从库。 4.4. 读写分离 41 Apache ShardingSphere document, v5.0.0 读写分离的数据节点中的数据内容是一致的,而0 码力 | 385 页 | 4.26 MB | 1 年前3
 Apache ShardingSphere 中文文档 5.1.2数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 。 4.2.2 挑战 管控的挑战,在于对集群的集中化管理的统一管理能力以及在单点出现故障时精细化的操作能力。 集中化管理的挑战体现在将包括数据库存储节点和中间件计算节点的状态统一管理,并且能够实时的探 测到分布式环境下最新的变动情况,进一步为集群的控制和调度提供依据。 面对超负荷的流量下,针对某一节点进行熔断和限流,以保证整个数据库集群得以继续运行,是分布式 系统下对单一节点控制能力的挑战。0 码力 | 446 页 | 4.67 MB | 1 年前3 Apache ShardingSphere 中文文档 5.1.2数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 。 4.2.2 挑战 管控的挑战,在于对集群的集中化管理的统一管理能力以及在单点出现故障时精细化的操作能力。 集中化管理的挑战体现在将包括数据库存储节点和中间件计算节点的状态统一管理,并且能够实时的探 测到分布式环境下最新的变动情况,进一步为集群的控制和调度提供依据。 面对超负荷的流量下,针对某一节点进行熔断和限流,以保证整个数据库集群得以继续运行,是分布式 系统下对单一节点控制能力的挑战。0 码力 | 446 页 | 4.67 MB | 1 年前3
共 14 条
- 1
- 2













