Apache ShardingSphere ElasticJob 中文文档 2023 年 11 月 01 日ElasticJob 定位为轻量级无中心化解决方案,使用 jar 的形式提供分布式任务的协调服务。 2 2 功能列表 • 弹性调度 – 支持任务在分布式场景下的分片和高可用 – 能够水平扩展任务的吞吐量和执行效率 – 任务处理能力随资源配备弹性伸缩 • 资源分配 – 在适合的时间将适合的资源分配给任务并使其生效 – 相同任务聚合至相同的执行器统一处理 – 动态调配追加资源至新分配的任务 失效转移 – 错过作业重新执行 – 自诊断修复 • 作业依赖 (TODO) – 基于有向无环图(DAG)的作业间依赖 – 基于有向无环图(DAG)的作业分片间依赖 • 作业开放生态 – 可扩展的作业类型统一接口 – 丰富的作业类型库,如数据流、脚本、HTTP、文件、大数据等 – 易于对接业务作业,能够与 Spring 依赖注入无缝整合 • 可视化管控端 – 作业管控端 – 作业执行历史数据追踪 Bean,如数据源连 接池、Dubbo 远程服务等,更加方便的贴合业务开发。 5.2 弹性调度 弹性调度是 ElasticJob 最重要的功能,也是这款产品名称的由来。它是一款能够让任务通过分片进行水 平扩展的任务处理系统。 5.2.1 分片 ElasticJob 中任务分片项的概念,使得任务可以在分布式的环境下运行,每台任务服务器只运行分配给该 服务器的分片。随着服务器的增加或宕机,ElasticJob0 码力 | 98 页 | 1.97 MB | 1 年前3
Apache ShardingSphere 中文文档 5.2.0. . . . . 17 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.5 相关参考 . . . . . . . . . ShardingSphere 1.1.1 介绍 Apache ShardingSphere 是一款开源的分布式数据库生态项目,由 JDBC 和 Proxy 两款产品组成。其核心 采用微内核 + 可插拔架构,通过插件开放扩展功能。它提供多源异构数据库增强平台,进而围绕其上层 构建生态。 Apache ShardingSphere 设计哲学为 Database Plus,旨在构建异构数据库上层的标准和生态。它关注如 document, v5.2.0 1.1.2 产品功能 特性 定义 数 据 分片 数据分片,是应对海量数据存储与计算的有效手段。ShardingSphere 提供基于底层数据库之 上,可计算与存储水平扩展的分布式数据库解决方案。 分 布 式 事 务 事务能力,是保障数据库完整、安全的关键技术,也是数据库的核心技术之一。ShardingSphere 提供在单机数据库之上的分布式事务能力,可实现跨底层数据源的数据安全。0 码力 | 449 页 | 5.85 MB | 1 年前3
Apache ShardingSphere 中文文档 5.4.1. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . . 可满足业务无需改造,实现平滑业务迁移。 • 运维低成本 在保留原技术栈不变前提下,对 DBA 学习、管理成本低,交互友好。 • 安全稳定 基于成熟数据库底座之上提供增量能力,兼顾安全性及稳定性。 • 弹性扩展 具备计算、存储平滑在线扩展能力,可满足业务多变的需求。 • 开放生态 通过多层次(内核、功能、生态)插件化能力,为用户提供可定制满足自身特殊需求的独有系统。 1.3. 产品优势 2 2 设计哲学 ShardingSphere 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 Apache ShardingSphere 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。0 码力 | 530 页 | 4.49 MB | 1 年前3
Apache ShardingSphere 中文文档 5.3.2. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . . 可满足业务无需改造,实现平滑业务迁移。 • 运维低成本 在保留原技术栈不变前提下,对 DBA 学习、管理成本低,交互友好。 • 安全稳定 基于成熟数据库底座之上提供增量能力,兼顾安全性及稳定性。 • 弹性扩展 具备计算、存储平滑在线扩展能力,可满足业务多变的需求。 • 开放生态 通过多层次(内核、功能、生态)插件化能力,为用户提供可定制满足自身特殊需求的独有系统。 1.3. 产品优势 2 2 设计哲学 ShardingSphere 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 Apache ShardingSphere 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。0 码力 | 508 页 | 4.44 MB | 1 年前3
Apache ShardingSphere v5.5.0 中文文档. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . . 可满足业务无需改造,实现平滑业务迁移。 • 运维低成本 在保留原技术栈不变前提下,对 DBA 学习、管理成本低,交互友好。 • 安全稳定 基于成熟数据库底座之上提供增量能力,兼顾安全性及稳定性。 • 弹性扩展 具备计算、存储平滑在线扩展能力,可满足业务多变的需求。 • 开放生态 通过多层次(内核、功能、生态)插件化能力,为用户提供可定制满足自身特殊需求的独有系统。 1.3. 产品优势 2 2 设计哲学 ShardingSphere 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 Apache ShardingSphere 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。0 码力 | 557 页 | 4.61 MB | 1 年前3
孟浩然-Apache ShardingSphere 架构解析&应用实践应用以及对分片数 据库进行管理和运维的场景。 整 体 架 构 l L1 内核层:面向数据库内核, 包括数据库事务引擎,查询优 化器等; l L2 功能层:可定制化开发平 台。具有高定制化、高度内 聚、灵活扩展等特点; l L3 生态层:通过三个接口分别 实现数据库协议、 SQL 方言和 数据库存储对接,用于打造异 构数据网关; 连接 连接是 ShardingSphere 的基础能 力,可以有效简化数据和应用之间 流)以及流量分析(可观察性、服 务质量分析)等。 可插拔 可插拔是 ShardingSphere 的设计 理念,架构内核是完全面向顶层接 口设计的,内核模块完全不感知具 体功能的存在。它为分库分表、读 写分离等每一个功能插件赋予单独 部署和协同配合的能力。 整 体 架 构 内 核 架 构 l ShardingSphere 可插拔架构提供了 数十个基于 SPI 的扩展点,开发者可 的扩展点,开发者可 以十分方便的对功能进行定制化扩展; l 按照扩展点是基于技术还是基于功能 实现,可以将扩展点划分为功能扩展 点和技术扩展点。 l 基于扩展点,ShardingSphere 默认 实现了数据分片、读写分离、数据加 密、影子库压测、高可用等功能; 1. Apache ShardingSphere 5.0.0 架构解析 2. 5.0.0 应用实践 3. Database Plus 解决方案0 码力 | 31 页 | 2.36 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.1读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 ShardingSphere 已于 2020 年 4 月 16 ng (Experimental) 9 3 概念 Apache ShardingSphere 功能十分复杂,有数百模块之多,但众多模块间的概念却简单明了。大部分模块 都是面向这几个概念的横向扩展。 它的概念主要包括:面向独立产品的接入端、面向启动的运行模式、面向使用者操作的 DistSQL 以及面 向开发者的可插拔架构。 本章节将详细阐述 Apache ShardingSphere 相关的概念。 3.2.4 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。在真实部 署上线的生产环境,必须使用集群模式。它能够提供计算能力水平扩展和高可用等分布式系统必备的能 力。集群环境需要通过独立部署的注册中心来存储元数据和协调节点状态。 3.3 DistSQL 3.3.1 背景 DistSQL(Distributed SQL)是0 码力 | 409 页 | 4.47 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.0读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 ShardingSphere 已于 2020 年 4 月 16 ng (Experimental) 9 3 概念 Apache ShardingSphere 功能十分复杂,有数百模块之多,但众多模块间的概念却简单明了。大部分模块 都是面向这几个概念的横向扩展。 它的概念主要包括:面向独立产品的接入端、面向启动的运行模式、面向使用者操作的 DistSQL 以及面 向开发者的可插拔架构。 本章节将详细阐述 Apache ShardingSphere 相关的概念。 3.2.4 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。在真实部 署上线的生产环境,必须使用集群模式。它能够提供计算能力水平扩展和高可用等分布式系统必备的能 力。集群环境需要通过独立部署的注册中心来存储元数据和协调节点状态。 3.3 DistSQL 3.3.1 背景 DistSQL(Distributed SQL)是0 码力 | 406 页 | 4.40 MB | 1 年前3
Apache ShardingSphere 中文文档 5.0.0-alpha测试过程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 sysbench 测试用例分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 附录 1 . . . . . . . . . . . . ShardingSphere 是一套开源的分布式数据库解决方案组成的生态圈,它由 JDBC、Proxy 和 Sidecar (规划中)这 3 款既能够独立部署,又支持混合部署配合使用的产品组成。它们均提供标准化的数据水平 扩展、分布式事务和分布式治理等功能,可适用于如 Java 同构、异构语言、云原生等各种多样化的应用 场景。 Apache ShardingSphere 旨在充分合理地在分布式的场景下利用关系型数据库的计算和存储能力,而并 版本开始致力于可插拔架构,项目的功能组件能够灵活的以可插拔的方式 进行扩展。目前,数据分片、读写分离、数据加密、影子库压测等功能,以及对 MySQL、PostgreSQL、 SQLServer、Oracle 等 SQL 与协议的支持,均通过插件的方式织入项目。开发者能够像使用积木一样定 制属于自己的独特系统。Apache ShardingSphere 目前已提供数十个 SPI 作为系统的扩展点,而且仍在不 断增加中。 ShardingSphere0 码力 | 301 页 | 3.44 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.2读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 ShardingSphere 已于 2020 年 4 月 16 ShardingSphere-Proxy 9 3 概念 Apache ShardingSphere 功能十分复杂,有数百模块之多,但众多模块间的概念却简单明了。大部分模块 都是面向这几个概念的横向扩展。 它的概念主要包括:面向独立产品的接入端、面向启动的运行模式、面向使用者操作的 DistSQL 以及面 向开发者的可插拔架构。 本章节将详细阐述 Apache ShardingSphere 相关的概念。 3.2.4 集群模式 提供了多个 Apache ShardingSphere 实例之间的元数据共享和分布式场景下状态协调的能力。在真实部 署上线的生产环境,必须使用集群模式。它能够提供计算能力水平扩展和高可用等分布式系统必备的能 力。集群环境需要通过独立部署的注册中心来存储元数据和协调节点状态。 源码:https://github.com/apache/shardingsphere/tree0 码力 | 446 页 | 4.67 MB | 1 年前3
共 15 条
- 1
- 2













