Julia v1.2.0 Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1250 页 | 4.29 MB | 1 年前3
Julia v1.1.1 Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1216 页 | 4.21 MB | 1 年前3
Julia 1.1.0 Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1214 页 | 4.21 MB | 1 年前3
Julia 1.2.0 DEV Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1252 页 | 4.28 MB | 1 年前3
Julia v1.4.2 Documentationpermutation: 2-element Array{Int64,1}: 2 1 LinearAlgebra.bunchkaufman – Function. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factorization of a symmetric components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivoting is used. If rook is false, rook pivoting is not used. When check = true, an error is thrown if the decomposition permutation: 2-element Array{Int64,1}: 2 1 LinearAlgebra.bunchkaufman! – Function. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1314 页 | 4.29 MB | 1 年前3
Julia v1.3.1 Documentationpermutation: 2-element Array{Int64,1}: 2 1 LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on permutation: 2-element Array{Int64,1}: 2 1 LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1276 页 | 4.36 MB | 1 年前3
Julia v1.5.4 Documentationpermutation: 2-element Array{Int64,1}: 2 1 LinearAlgebra.bunchkaufman – Function. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factorization of a symmetric components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivoting is used. If rook is false, rook pivoting is not used. When check = true, an error is thrown if the decomposition permutation: 2-element Array{Int64,1}: 2 1 LinearAlgebra.bunchkaufman! – Function. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1337 页 | 4.41 MB | 1 年前3
Julia v1.6.6 Documentationpermutation: 2-element Vector{Int64}: 2 1 LinearAlgebra.bunchkaufman – Function. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factorization of a symmetric components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivoting is used. If rook is false, rook pivoting is not used. When check = true, an error is thrown if the decomposition permutation: 2-element Vector{Int64}: 2 1 LinearAlgebra.bunchkaufman! – Function. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1324 页 | 4.54 MB | 1 年前3
Julia 1.6.5 Documentationpermutation: 2-element Vector{Int64}: 2 1 LinearAlgebra.bunchkaufman – Function. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factorization of a symmetric components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivoting is used. If rook is false, rook pivoting is not used. When check = true, an error is thrown if the decomposition permutation: 2-element Vector{Int64}: 2 1 LinearAlgebra.bunchkaufman! – Function. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1325 页 | 4.54 MB | 1 年前3
Julia 1.6.7 Documentationpermutation: 2-element Vector{Int64}: 2 1 LinearAlgebra.bunchkaufman – Function. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factorization of a symmetric components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivoting is used. If rook is false, rook pivoting is not used. When check = true, an error is thrown if the decomposition permutation: 2-element Vector{Int64}: 2 1 LinearAlgebra.bunchkaufman! – Function. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1324 页 | 4.54 MB | 1 年前3
共 87 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9













