积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(87)Julia(87)

语言

全部英语(76)中文(繁体)(10)中文(简体)(1)

格式

全部PDF文档 PDF(87)
 
本次搜索耗时 0.381 秒,为您找到相关结果约 87 个.
  • 全部
  • 后端开发
  • Julia
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Julia 中文文档

    "00111111101000000000000000000000" julia> bitstring(nextfloat(x)) "00111111101000000000000000000001" 这个例子体现了一般原则,即相邻可表示的浮点数也有着相邻的二进制整数表示。 舍入模式 一个数如果没有精确的浮点表示,就必须被舍入到一个合适的可表示的值。然而,如果想的话,可 以根据舍入模式改变舍入的方式,如 IEEE 754 typeof(ans) Rational{Int32} 对于大多数用户定义的类型,最好要求程序员明确地向构造函数提供期待的类型,但有时,尤其是 对于数值问题,自动进行类型提升会很方便。 定义类型提升规则 虽然原则上可以直接为 promote 函数定义方法,但这需要为参数类型的所有可能排列下许多冗余的 定义。相反地,promote 的行为是根据名为 promote_rule 的辅助函数定义的,该辅助函数可以为其 同,运行时系统无法正确处理对 eval 的调用,所以不允许这样做。 理解 @generated 函数与方法的重定义间如何相互作用也很重要。遵循正确的 @generated 函数不能观 察任何可变状态或导致全局状态的任何更改的原则,我们看到以下行为。观察到,生成函数不能调 用在生成函数本身的定义之前未定义的任何方法。 一开始 f(x) 有一个定义 19.6. 生成函数 207 julia> f(x) = "original
    0 码力 | 1238 页 | 4.59 MB | 1 年前
    3
  • pdf文档 Julia v1.2.0 Documentation

    the enclosing scope can be "captured" in the inner func�on. For example, sum(p[i] - q[i] for i=1:n) cap- tures the three variables p, q and n from the enclosing scope. Captured variables can present performance substan�ally reorganizes the above code by extrac�ng the inner func�on to a separate code block. "Cap- tured" variables such as r that are shared by inner func�ons and their enclosing scope are also extracted U+02226 \nparallel Not Parallel To U+02227 \wedge Logical And U+02228 \vee Logical Or U+02229 ∩ \cap Intersec�on U+0222A \cup Union U+0222B ∫ \int Integral U+0222C \iint Double Integral U+0222D \iiint
    0 码力 | 1250 页 | 4.29 MB | 1 年前
    3
  • pdf文档 Julia v1.1.1 Documentation

    the enclosing scope can be "captured" in the inner func�on. For example, sum(p[i] - q[i] for i=1:n) cap- tures the three variables p, q and n from the enclosing scope. Captured variables can present performance substan�ally reorganizes the above code by extrac�ng the inner func�on to a separate code block. "Cap- tured" variables such as r that are shared by inner func�ons and their enclosing scope are also extracted U+02226 \nparallel Not Parallel To U+02227 \wedge Logical And U+02228 \vee Logical Or U+02229 ∩ \cap Intersec�on U+0222A \cup Union U+0222B ∫ \int Integral U+0222C \iint Double Integral U+0222D \iiint
    0 码力 | 1216 页 | 4.21 MB | 1 年前
    3
  • pdf文档 Julia 1.1.0 Documentation

    the enclosing scope can be "captured" in the inner func�on. For example, sum(p[i] - q[i] for i=1:n) cap- tures the three variables p, q and n from the enclosing scope. Captured variables can present performance substan�ally reorganizes the above code by extrac�ng the inner func�on to a separate code block. "Cap- tured" variables such as r that are shared by inner func�ons and their enclosing scope are also extracted U+02226 \nparallel Not Parallel To U+02227 \wedge Logical And U+02228 \vee Logical Or U+02229 ∩ \cap Intersec�on U+0222A \cup Union U+0222B ∫ \int Integral U+0222C \iint Double Integral U+0222D \iiint
    0 码力 | 1214 页 | 4.21 MB | 1 年前
    3
  • pdf文档 Julia 1.2.0 DEV Documentation

    the enclosing scope can be "captured" in the inner func�on. For example, sum(p[i] - q[i] for i=1:n) cap- tures the three variables p, q and n from the enclosing scope. Captured variables can present performance substan�ally reorganizes the above code by extrac�ng the inner func�on to a separate code block. "Cap- tured" variables such as r that are shared by inner func�ons and their enclosing scope are also extracted U+02226 \nparallel Not Parallel To U+02227 \wedge Logical And U+02228 \vee Logical Or U+02229 ∩ \cap Intersec�on U+0222A \cup Union U+0222B ∫ \int Integral U+0222C \iint Double Integral U+0222D \iiint
    0 码力 | 1252 页 | 4.28 MB | 1 年前
    3
  • pdf文档 Julia 1.8.0 DEV Documentation

    ∦ \nparallel Not Parallel To U+02227 ∧ \wedge Logical And U+02228 ∨ \vee Logical Or U+02229 ∩ \cap Intersection U+0222A ∪ \cup Union U+0222B ∫ \int Integral U+0222C ∬ \iint Double Integral U+0222D Image Of Or Equal To U+02292 ⊒ \sqsupseteq Square Original Of Or Equal To U+02293 ⊓ \sqcap Square Cap U+02294 ⊔ \sqcup Square Cup U+02295 ⊕ \oplus Circled Plus U+02296 ⊖ \ominus Circled Minus U+02297 Curly Logical And U+022D0 ⋐ \Subset Double Subset U+022D1 ⋑ \Supset Double Superset U+022D2 ⋒ \Cap Double Intersection U+022D3 ⋓ \Cup Double Union U+022D4 ⋔ \pitchfork Pitchfork U+022D5 ⋕ \equalparallel
    0 码力 | 1463 页 | 5.01 MB | 1 年前
    3
  • pdf文档 Julia v1.3.1 Documentation

    the enclosing scope can be "captured" in the inner func�on. For example, sum(p[i] - q[i] for i=1:n) cap- tures the three variables p, q and n from the enclosing scope. Captured variables can present performance substan�ally reorganizes the above code by extrac�ng the inner func�on to a separate code block. "Cap- tured" variables such as r that are shared by inner func�ons and their enclosing scope are also extracted U+02226 \nparallel Not Parallel To U+02227 \wedge Logical And U+02228 \vee Logical Or U+02229 ∩ \cap Intersec�on U+0222A \cup Union U+0222B ∫ \int Integral U+0222C \iint Double Integral U+0222D \iiint
    0 码力 | 1276 页 | 4.36 MB | 1 年前
    3
  • pdf文档 Julia 1.3.0 DEV Documentation

    the enclosing scope can be "captured" in the inner func�on. For example, sum(p[i] - q[i] for i=1:n) cap- tures the three variables p, q and n from the enclosing scope. Captured variables can present performance substan�ally reorganizes the above code by extrac�ng the inner func�on to a separate code block. "Cap- tured" variables such as r that are shared by inner func�ons and their enclosing scope are also extracted U+02226 \nparallel Not Parallel To U+02227 \wedge Logical And U+02228 \vee Logical Or U+02229 ∩ \cap Intersec�on U+0222A \cup Union U+0222B ∫ \int Integral U+0222C \iint Double Integral U+0222D \iiint
    0 码力 | 1274 页 | 4.36 MB | 1 年前
    3
  • pdf文档 Julia v1.8.5 Documentation

    ∦ \nparallel Not Parallel To U+02227 ∧ \wedge Logical And U+02228 ∨ \vee Logical Or U+02229 ∩ \cap Intersection U+0222A ∪ \cup Union U+0222B ∫ \int Integral U+0222C ∬ \iint Double Integral U+0222D Image Of Or Equal To U+02292 ⊒ \sqsupseteq Square Original Of Or Equal To U+02293 ⊓ \sqcap Square Cap U+02294 ⊔ \sqcup Square Cup U+02295 ⊕ \oplus Circled Plus U+02296 ⊖ \ominus Circled Minus U+02297 Curly Logical And U+022D0 ⋐ \Subset Double Subset U+022D1 ⋑ \Supset Double Superset U+022D2 ⋒ \Cap Double Intersection U+022D3 ⋓ \Cup Double Union U+022D4 ⋔ \pitchfork Pitchfork U+022D5 ⋕ \equalparallel
    0 码力 | 1565 页 | 5.04 MB | 1 年前
    3
  • pdf文档 Julia v1.9.4 Documentation

    ∦ \nparallel Not Parallel To U+02227 ∧ \wedge Logical And U+02228 ∨ \vee Logical Or U+02229 ∩ \cap Intersection U+0222A ∪ \cup Union U+0222B ∫ \int Integral U+0222C ∬ \iint Double Integral U+0222D Image Of Or Equal To U+02292 ⊒ \sqsupseteq Square Original Of Or Equal To U+02293 ⊓ \sqcap Square Cap U+02294 ⊔ \sqcup Square Cup U+02295 ⊕ \oplus Circled Plus U+02296 ⊖ \ominus Circled Minus U+02297 Curly Logical And U+022D0 ⋐ \Subset Double Subset U+022D1 ⋑ \Supset Double Superset U+022D2 ⋒ \Cap Double Intersection U+022D3 ⋓ \Cup Double Union U+022D4 ⋔ \pitchfork Pitchfork U+022D5 ⋕ \equalparallel
    0 码力 | 1644 页 | 5.27 MB | 1 年前
    3
共 87 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往
页
相关搜索词
Julia中文文档v12.0Documentation1.11.2DEV1.83.11.38.59.4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩