积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(87)Julia(87)

语言

全部英语(76)中文(繁体)(10)中文(简体)(1)

格式

全部PDF文档 PDF(87)
 
本次搜索耗时 0.638 秒,为您找到相关结果约 87 个.
  • 全部
  • 后端开发
  • Julia
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Julia 中文文档

    Int" julia> gen1(1) "original definition" julia> gen2(1) "definition for Int" 生成函数的每个方法都有自己的已定义函数视图: julia> @generated gen1(x::Real) = f(x); julia> gen1(1) "definition for Type{Int}" 上例中的生成函数 foo 将输入索引向量存储在 SubArray 对象中, 该对象稍后可用于间接索引原始数组。通过将 @views 宏放在表达式或代码块之前,该表达式中的任 何 array [...] 切片将被转换为创建一个 SubArray 视图。 BitArray 是节省空间“压缩”的布尔数组,每个比特(bit)存储一个布尔值。它们可以类似于 Array{Bool} 数组(每个字节(byte)存储一个布尔值),并且可以分别通过 Array(bitarray) 列序优先方式访问数组的原因相同(请参见上文)。由于不按顺序访问内存,无规律的访问方式和不 连续的视图可能会大大减慢数组上的计算速度。 在对无规律访问的数据进行操作前,将其复制到连续的数组中可能带来巨大的加速,正如下例所示。 其中,矩阵和向量在相乘前会访问其 800,000 个已被随机混洗的索引处的值。将视图复制到普通数 组会加速乘法,即使考虑了复制操作的成本。 julia> using Random
    0 码力 | 1238 页 | 4.59 MB | 1 年前
    3
  • pdf文档 Julia 1.11.4

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3);CHAPTER row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3);CHAPTER row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3);CHAPTER row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 48. ARRAYS 1088 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 48. ARRAYS 1087 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta3

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 48. ARRAYS 1087 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 julia 1.12.0 beta1

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 47. ARRAYS 1079 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2047 页 | 7.41 MB | 3 月前
    3
  • pdf文档 Julia 1.1.0 Documentation

    expression A[5] returns the value 5. Julia allows you to combine these styles of indexing: for example, a 3d array A3 can be indexed as A3[i,j], in which case i is interpreted as a cartesian index for the first terms of cartesian, rather than linear, indexing. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64,3}, :, 1,
    0 码力 | 1214 页 | 4.21 MB | 1 年前
    3
共 87 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往
页
相关搜索词
Julia中文文档1.11DocumentationReleaseNotesjulia1.13DEV1.12RC1Beta4Beta3beta11.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩