Julia 中文文档字节数组字面量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.11 版本号字面量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.12 原始字符串字面量 Julia benchmarks for linear algebra operations different from other languages? . . 371 38.11Julia 版本发布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 Do I want code 1213 93.1 报告和分析崩溃(段错误) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213 版本/环境信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213 Segfaults0 码力 | 1238 页 | 4.59 MB | 1 年前3
julia 1.10.10_ can be used as digit separator: julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010 (10000, 5.0e-9, 0xdeadbeef, 0xb2) Floating-point zero Floating-point numbers have two zeros, positive zero and julia> eps(1000.) 1.1368683772161603e-13 julia> eps(1e-27) 1.793662034335766e-43 julia> eps(0.0) 5.0e-324CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 21 The distance between two adjacent representable end r = x/y return y*sqrt(1+r*r) end hypot (generic function with 1 method) julia> hypot(3, 4) 5.0CHAPTER 8. FUNCTIONS 71 There are three possible points of return from this function, returning the0 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.10.9_ can be used as digit separator: julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010 (10000, 5.0e-9, 0xdeadbeef, 0xb2) Floating-point zero Floating-point numbers have two zeros, positive zero and julia> eps(1000.) 1.1368683772161603e-13 julia> eps(1e-27) 1.793662034335766e-43 julia> eps(0.0) 5.0e-324 The distance between two adjacent representable floating-point numbers is not constant, but is end r = x/y return y*sqrt(1+r*r) end hypot (generic function with 1 method) julia> hypot(3, 4) 5.0CHAPTER 8. FUNCTIONS 71 There are three possible points of return from this function, returning the0 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.11.4_ can be used as digit separator: julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010 (10000, 5.0e-9, 0xdeadbeef, 0xb2) Floating-point zero Floating-point numbers have two zeros, positive zero and julia> eps(1000.) 1.1368683772161603e-13 julia> eps(1e-27) 1.793662034335766e-43 julia> eps(0.0) 5.0e-324 The distance between two adjacent representable floating-point numbers is not constant, but is r = x/y return y*sqrt(1 + r*r) end hypot (generic function with 1 method) julia> hypot(3, 4) 5.0 There are three possible points of return from this function, returning the values of three different0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.5 Documentation_ can be used as digit separator: julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010 (10000, 5.0e-9, 0xdeadbeef, 0xb2) Floating-point zero Floating-point numbers have two zeros, positive zero and julia> eps(1000.) 1.1368683772161603e-13 julia> eps(1e-27) 1.793662034335766e-43 julia> eps(0.0) 5.0e-324 The distance between two adjacent representable floating-point numbers is not constant, but is r = x/y return y*sqrt(1 + r*r) end hypot (generic function with 1 method) julia> hypot(3, 4) 5.0 There are three possible points of return from this function, returning the values of three different0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.6 Release Notes_ can be used as digit separator: julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010 (10000, 5.0e-9, 0xdeadbeef, 0xb2) Floating-point zero Floating-point numbers have two zeros, positive zero and julia> eps(1000.) 1.1368683772161603e-13 julia> eps(1e-27) 1.793662034335766e-43 julia> eps(0.0) 5.0e-324 The distance between two adjacent representable floating-point numbers is not constant, but is r = x/y return y*sqrt(1 + r*r) end hypot (generic function with 1 method) julia> hypot(3, 4) 5.0 There are three possible points of return from this function, returning the values of three different0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia v1.4.2 Documentation_ can be used as digit separator: julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010 (10000, 5.0e-9, 0xdeadbeef, 0xb2) Floating-point zero Floating-point numbers have two zeros, positive zero and julia> eps(1000.) 1.1368683772161603e-13 julia> eps(1e-27) 1.793662034335766e-43 julia> eps(0.0) 5.0e-324 The distance between two adjacent representable floating-point numbers is not constant, but is end r = x/y return y*sqrt(1+r*r) end hypot (generic function with 1 method) julia> hypot(3, 4) 5.0 There are three possible points of return from this function, returning the values of three different0 码力 | 1314 页 | 4.29 MB | 1 年前3
Julia v1.5.4 Documentation_ can be used as digit separator: julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010 (10000, 5.0e-9, 0xdeadbeef, 0xb2) 4.2. FLOATING-POINT NUMBERS 19 Floating-point zero Floating-point numbers 1368683772161603e-13 julia> eps(1e-27) 1.793662034335766e-43 4.2. FLOATING-POINT NUMBERS 21 julia> eps(0.0) 5.0e-324 The distance between two adjacent representable floating-point numbers is not constant, but is end r = x/y return y*sqrt(1+r*r) end hypot (generic function with 1 method) julia> hypot(3, 4) 5.0 There are three possible points of return from this function, returning the values of three different0 码力 | 1337 页 | 4.41 MB | 1 年前3
Julia v1.6.6 Documentation_ can be used as digit separator: julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010 (10000, 5.0e-9, 0xdeadbeef, 0xb2) Floating-point zero Floating-point numbers have two zeros, positive zero and julia> eps(1000.) 1.1368683772161603e-13 julia> eps(1e-27) 1.793662034335766e-43 julia> eps(0.0) 5.0e-324 The distance between two adjacent representable floating-point numbers is not constant, but is end r = x/y return y*sqrt(1+r*r) end hypot (generic function with 1 method) julia> hypot(3, 4) 5.0 There are three possible points of return from this function, returning the values of three different0 码力 | 1324 页 | 4.54 MB | 1 年前3
Julia 1.6.5 Documentation_ can be used as digit separator: julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010 (10000, 5.0e-9, 0xdeadbeef, 0xb2) Floating-point zero Floating-point numbers have two zeros, positive zero and julia> eps(1000.) 1.1368683772161603e-13 julia> eps(1e-27) 1.793662034335766e-43 julia> eps(0.0) 5.0e-324 The distance between two adjacent representable floating-point numbers is not constant, but is end r = x/y return y*sqrt(1+r*r) end hypot (generic function with 1 method) julia> hypot(3, 4) 5.0 There are three possible points of return from this function, returning the values of three different0 码力 | 1325 页 | 4.54 MB | 1 年前3
共 87 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9













