积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(87)Julia(87)

语言

全部英语(76)中文(繁体)(10)中文(简体)(1)

格式

全部PDF文档 PDF(87)
 
本次搜索耗时 0.406 秒,为您找到相关结果约 87 个.
  • 全部
  • 后端开发
  • Julia
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Julia 中文文档

    数学运算和初等函数 julia> -0.0 == 0.0 true julia> isequal(-0.0, 0.0) false 有符号整数、无符号整数以及浮点数之间的混合类型比较是很棘手的。开发者费了很大精力来确保 Julia 在这个问题上做的是正确的。 对于其它类型,isequal 会默认调用 ==,所以如果你想给自己的类型定义相等,那么就只需要为 == 增加一个方法。如果你想定义一个 适用的通用调用 (像 similar 和-) 实现的。 这只是建议正交化你的方法的一个更加复杂的变种而已。 当这个方法不可行时,这就值得与其他开发者开始讨论如果解决歧义;只是因为一个函数先定义并 不总是意味着他不能改变或者被移除。作为最后一个手段,开发者可以定义” 创可贴” 方法 -(A::MyArrayType{T}, b::Date) where {T<:Date} = ... 可以暴力解决歧义。 仍可以被手动调用。此命令行标记的状态会 被传递给 Pkg.build,禁止其在安装、更新、显式构建包时触发自动预编译。 Chapter 18 文档 自 Julia 0.4 开始,Julia 允许开发者和用户,使用其内置的文档系统更加便捷地为函数、类型以及其他 对象编写文档。 基础语法很简单:紧接在对象(函数,宏,类型和实例)之前的字符串都会被认为是对应对象的文 档(称作 docstrings)。注意不要在
    0 码力 | 1238 页 | 4.59 MB | 1 年前
    3
  • pdf文档 Julia v1.2.0 Documentation

    dot product using a BLAS func�on. function compute_dot(DX::Vector{Float64}, DY::Vector{Float64}) @assert length(DX) == length(DY) n = length(DX) incx = incy = 1 product = ccall((:ddot_, "libLAPACK"), Float64, (Ref{Int32}, Ptr{Float64}, Ref{Int32}, Ptr{Float64}, Ref{Int32}), n, DX, incx, DY, incy) return product end 324 CHAPTER 34. CALLING C AND FORTRAN CODE The meaning of prefix & is not quite (u::Vector) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it has 1-based indexing �→ u[i] = sin(2pi*dx*i) end end function deriv
    0 码力 | 1250 页 | 4.29 MB | 1 年前
    3
  • pdf文档 Julia 1.2.0 DEV Documentation

    dot product using a BLAS func�on. function compute_dot(DX::Vector{Float64}, DY::Vector{Float64}) @assert length(DX) == length(DY) n = length(DX) incx = incy = 1 product = ccall((:ddot_, "libLAPACK"), Float64, (Ref{Int32}, Ptr{Float64}, Ref{Int32}, Ptr{Float64}, Ref{Int32}), n, DX, incx, DY, incy) return product end 326 CHAPTER 35. CALLING C AND FORTRAN CODE The meaning of prefix & is not quite (u::Vector) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it has 1-based indexing �→ u[i] = sin(2pi*dx*i) end end function deriv
    0 码力 | 1252 页 | 4.28 MB | 1 年前
    3
  • pdf文档 julia 1.10.10

    function compute_dot(DX::Vector{Float64}, DY::Vector{Float64}) @assert length(DX) == length(DY) n = length(DX) incx = incy = 1 product = @ccall "libLAPACK".ddot( n::Ref{Int32}, DX::Ptr{Float64}, incx::Ref{Int32} (u::Vector) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it has 1-based indexing �→ u[i] = sin(2pi*dx*i) end end function (u::Vector, du) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds du[1] = (u[2] - u[1]) / dx @fastmath @inbounds @simd for i in 2:n-1 du[i] = (u[i+1] - u[i-1]) / (2*dx) end @fastmath @inbounds du[n]
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.10.9

    function compute_dot(DX::Vector{Float64}, DY::Vector{Float64}) @assert length(DX) == length(DY) n = length(DX) incx = incy = 1 product = @ccall "libLAPACK".ddot( n::Ref{Int32}, DX::Ptr{Float64}, incx::Ref{Int32} (u::Vector) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it has 1-based indexing �→ u[i] = sin(2pi*dx*i) end end function (u::Vector, du) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds du[1] = (u[2] - u[1]) / dx @fastmath @inbounds @simd for i in 2:n-1 du[i] = (u[i+1] - u[i-1]) / (2*dx) end @fastmath @inbounds du[n]
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia v1.7.3 Documentation

    Fortran compiler implementations: function compute_dot(DX::Vector{Float64}, DY::Vector{Float64}) @assert length(DX) == length(DY) n = length(DX) incx = incy = 1 product = ccall((:ddot_, "libLAPACK") "libLAPACK"), Float64, (Ref{Int32}, Ptr{Float64}, Ref{Int32}, Ptr{Float64}, Ref{Int32}), n, DX, incx, DY, incy) return product end 27.6 Garbage Collection Safety When passing data to a ccall, it is best to (u::Vector) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it has 1-based indexing �→ u[i] = sin(2pi*dx*i) end end function
    0 码力 | 1378 页 | 4.74 MB | 1 年前
    3
  • pdf文档 Julia 1.8.0 DEV Documentation

    Fortran compiler implementations: function compute_dot(DX::Vector{Float64}, DY::Vector{Float64}) @assert length(DX) == length(DY) n = length(DX) incx = incy = 1 product = ccall((:ddot_, "libLAPACK") "libLAPACK"), Float64, (Ref{Int32}, Ptr{Float64}, Ref{Int32}, Ptr{Float64}, Ref{Int32}), n, DX, incx, DY, incy) return product end 27.6 Garbage Collection Safety When passing data to a ccall, it is best to (u::Vector) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it has 1-based indexing �→ u[i] = sin(2pi*dx*i) end end function
    0 码力 | 1463 页 | 5.01 MB | 1 年前
    3
  • pdf文档 Julia 1.7.0 Documentation

    Fortran compiler implementations: function compute_dot(DX::Vector{Float64}, DY::Vector{Float64}) @assert length(DX) == length(DY) n = length(DX) incx = incy = 1 product = ccall((:ddot_, "libLAPACK") "libLAPACK"), Float64, (Ref{Int32}, Ptr{Float64}, Ref{Int32}, Ptr{Float64}, Ref{Int32}), n, DX, incx, DY, incy) return product end 27.6 Garbage Collection Safety When passing data to a ccall, it is best to (u::Vector) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it has 1-based indexing �→ u[i] = sin(2pi*dx*i) end end function
    0 码力 | 1378 页 | 4.74 MB | 1 年前
    3
  • pdf文档 Julia 1.7.2 Documentation

    Fortran compiler implementations: function compute_dot(DX::Vector{Float64}, DY::Vector{Float64}) @assert length(DX) == length(DY) n = length(DX) incx = incy = 1 product = ccall((:ddot_, "libLAPACK") "libLAPACK"), Float64, (Ref{Int32}, Ptr{Float64}, Ref{Int32}, Ptr{Float64}, Ref{Int32}), n, DX, incx, DY, incy) return product end 27.6 Garbage Collection Safety When passing data to a ccall, it is best to (u::Vector) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it has 1-based indexing �→ u[i] = sin(2pi*dx*i) end end function
    0 码力 | 1378 页 | 4.74 MB | 1 年前
    3
  • pdf文档 Julia 1.7.1 Documentation

    Fortran compiler implementations: function compute_dot(DX::Vector{Float64}, DY::Vector{Float64}) @assert length(DX) == length(DY) n = length(DX) incx = incy = 1 product = ccall((:ddot_, "libLAPACK") "libLAPACK"), Float64, (Ref{Int32}, Ptr{Float64}, Ref{Int32}, Ptr{Float64}, Ref{Int32}), n, DX, incx, DY, incy) return product end 27.6 Garbage Collection Safety When passing data to a ccall, it is best to (u::Vector) n = length(u) dx = 1.0 / (n-1) @fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it has 1-based indexing �→ u[i] = sin(2pi*dx*i) end end function
    0 码力 | 1378 页 | 4.74 MB | 1 年前
    3
共 87 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往
页
相关搜索词
Julia中文文档v12.0Documentation1.2DEVjulia1.10107.31.81.7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩