积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(35)其它语言(35)

语言

全部英语(35)

格式

全部PDF文档 PDF(20)其他文档 其他(15)
 
本次搜索耗时 0.090 秒,为您找到相关结果约 35 个.
  • 全部
  • 后端开发
  • 其它语言
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Haskell 2010 Language Report

    reservedid → case | class | data | default | deriving | do | else | foreign | if | import | in | infix | infixl | infixr | instance | let | module | newtype | of | then | type | where | _ An identifier prefix negation, all operators are infix, although each infix operator can be used in a section to yield partially applied operators (see Section 3.5). All of the standard infix operators are just predefined letters, and the others by identifiers beginning with capitals; also, variables and constructors have infix forms, the other four do not. Module names are a dot-separated sequence of conids. Namespaces are
    0 码力 | 329 页 | 1.43 MB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.0.1

    module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ BUILTIN INTERVAL I #-} -- I : Setω {-# BUILTIN IZERO i0 #-} {-# BUILTIN IONE i1 #-} infix 30 primINeg infixr 20 primIMin primIMax primitive primIMin : I → I → I -- _∧_ primIMax : I → postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} infix 4 _≡_ _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ _≡_ {A = A} = PathP (λ _ → A) {-# BUILTIN PATH
    0 码力 | 256 页 | 247.15 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.0

    module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ BUILTIN INTERVAL I #-} -- I : Setω {-# BUILTIN IZERO i0 #-} {-# BUILTIN IONE i1 #-} infix 30 primINeg infixr 20 primIMin primIMax primitive primIMin : I → I → I -- _∧_ primIMax : I → postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} infix 4 _≡_ _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ _≡_ {A = A} = PathP (λ _ → A) {-# BUILTIN PATH
    0 码力 | 256 页 | 246.87 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.3

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ translation from Agda.Syntax.Concrete to Agda.Syntax.Abstract involves scope analysis, figuring out infix operator precedences and tidying up definitions. The abstract syntax Agda.Syntax.Abstract is the
    0 码力 | 379 页 | 354.83 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ translation from Agda.Syntax.Concrete to Agda.Syntax.Abstract involves scope analysis, figuring out infix operator precedences and tidying up definitions. The abstract syntax Agda.Syntax.Abstract is the
    0 码力 | 348 页 | 414.11 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2.2

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ translation from Agda.Syntax.Concrete to Agda.Syntax.Abstract involves scope analysis, figuring out infix operator precedences and tidying up definitions. The abstract syntax Agda.Syntax.Abstract is the
    0 码力 | 354 页 | 433.60 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2.1

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ translation from Agda.Syntax.Concrete to Agda.Syntax.Abstract involves scope analysis, figuring out infix operator precedences and tidying up definitions. The abstract syntax Agda.Syntax.Abstract is the
    0 码力 | 350 页 | 416.80 KB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.4.1

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration : Z → Z -Z (p , n) = (n , p) _≡Z_ : (x y : Z) → Set (p , n) ≡Z (p' , n') = (p + n') ≡ (p' + n) infix 10 _≡Z_ private postulate +comm : ∀ n m → (n + m) ≡ (m + n) invZ : ∀ x → (x +Z (-Z x)) ≡Z 0Z invZ module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-}
    0 码力 | 311 页 | 1.38 MB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.4.3

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration : Z → Z -Z (p , n) = (n , p) _≡Z_ : (x y : Z) → Set (p , n) ≡Z (p' , n') = (p + n') ≡ (p' + n) infix 10 _≡Z_ private postulate +comm : ∀ n m → (n + m) ≡ (m + n) invZ : ∀ x → (x +Z (-Z x)) ≡Z 0Z invZ module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-}
    0 码力 | 311 页 | 1.38 MB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.4.2

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration : Z → Z -Z (p , n) = (n , p) _≡Z_ : (x y : Z) → Set (p , n) ≡Z (p' , n') = (p + n') ≡ (p' + n) infix 10 _≡Z_ private postulate +comm : ∀ n m → (n + m) ≡ (m + n) invZ : ∀ x → (x +Z (-Z x)) ≡Z 0Z invZ module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-}
    0 码力 | 311 页 | 1.38 MB | 1 年前
    3
共 35 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
Haskell2010AgdaUserManualv26.06.36.26.4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩