Hello 算法 1.1.0 Dart版计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前,算法和数据结构就已经存在于世界的各个角落。早期的算法相对简单,例如古 代的计数方法和工具制作步骤等。随着文明的进步,算法逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 例等。 ‧ 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 和示例问题等。 第 0 章 前言 hello‑algo.com 3 图 0‑1 本书主要内容 0.1.3 致谢 本书在开源社 2‑6 斐波那契数列的递归树 从本质上看,递归体现了“将问题分解为更小子问题”的思维范式,这种分治策略至关重要。 ‧ 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略直接或间接地应用了这种思维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.2.3 两者对比 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。0 码力 | 378 页 | 18.45 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Dart 版计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前,算法和数据结构就已经存在于世界的各个角落。早期的算法相对简单,例如古 代的计数方法和工具制作步骤等。随着文明的进步,算法逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 例等。 ‧ 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 和示例问题等。 第 0 章 前言 www.hello‑algo.com 3 图 0‑1 本书主要内容 0.1.3 致谢 本书 2‑6 斐波那契数列的递归树 从本质上看,递归体现了“将问题分解为更小子问题”的思维范式,这种分治策略至关重要。 ‧ 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略直接或间接地应用了这种思维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.2.3 两者对比 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.0.0 Dart版例等。 ‧ 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 和示例问题等。 第 0 章 前言 hello‑algo.com 3 图 0‑1 本书主要内容 0.1.3 致谢 本书在开源社 2‑6 斐波那契数列的递归树 从本质上看,递归体现了“将问题分解为更小子问题”的思维范式,这种分治策略至关重要。 ‧ 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略直接或间接地应用了这种思维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.2.3 两者对比 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。 i; } return -1; } 值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来 一定的误导性。而最差时间复杂度更为实用,因为它给出了一个效率安全值,让我们可以放心地使用算法。 从上述示例可以看出,最差时间复杂度和最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率 可能很小,并不能真实地反映算法运行效率。相比之下,平均时间复杂度可以体现算法在随机输入数据下的0 码力 | 377 页 | 17.56 MB | 1 年前3
Hello 算法 1.0.0b5 Dart版例等。 ‧ 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤、 示例题目等。 第 0 章 前言 hello‑algo.com 3 图 0‑1 Hello 算法内容结构 0.1.3 致谢 2‑6 斐波那契数列的递归树 本质上看,递归体现“将问题分解为更小子问题”的思维范式,这种分治策略是至关重要的。 ‧ 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略都直接或间接地应用这种思维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们 i; } return -1; } 值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来 一定的误导性。而最差时间复杂度更为实用,因为它给出了一个效率安全值,让我们可以放心地使用算法。 从上述示例可以看出,最差或最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小, 并不能真实地反映算法运行效率。相比之下,平均时间复杂度可以体现算法在随机输入数据下的运行效率,0 码力 | 376 页 | 30.67 MB | 1 年前3
Hello 算法 1.2.0 繁体中文 Dart 版i; } return -1; } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 { if (nums[i] == target) return i; } return -1; } 7. 擴容陣列 在複雜的系統環境中,程式難以保證陣列之後的記憶體空間是可用的,從而無法安全地擴展陣列容量。因此 在大多數程式語言中,陣列的長度是不可變的。 如果我們希望擴容陣列,則需重新建立一個更大的陣列,然後把原陣列元素依次複製到新陣列。這是一個 ?(?) 的操作,在陣列很大的情況下非常耗時。程式碼如下所示: P 已經從鏈結串列中刪除了,此時節點 P 指向哪裡都不會對該鏈結串列產生影響。 從資料結構與演算法(做題)的角度看,不斷開沒有關係,只要保證程式的邏輯是正確的就行。從標準庫的 角度看,斷開更加安全、邏輯更加清晰。如果不斷開,假設被刪除節點未被正常回收,那麼它會影響後繼節 點的記憶體回收。 Q:在鏈結串列中插入和刪除操作的時間複雜度是 ?(1) 。但是增刪之前都需要 ?(?) 的時間查詢元素,那0 码力 | 378 页 | 18.77 MB | 10 月前3
共 5 条
- 1













