 Hello 算法 1.0.0 Dart版“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() ,从而占用 ?(?) 的栈帧空间。 第 2 章 复杂度分析 hello‑algo.com 44 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶0 码力 | 377 页 | 17.56 MB | 1 年前3 Hello 算法 1.0.0 Dart版“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() ,从而占用 ?(?) 的栈帧空间。 第 2 章 复杂度分析 hello‑algo.com 44 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶0 码力 | 377 页 | 17.56 MB | 1 年前3
 Hello 算法 1.1.0 Dart版“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() ,从而占用 ?(?) 的栈帧空间。 第 2 章 复杂度分析 hello‑algo.com 44 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶0 码力 | 378 页 | 18.45 MB | 1 年前3 Hello 算法 1.1.0 Dart版“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() ,从而占用 ?(?) 的栈帧空间。 第 2 章 复杂度分析 hello‑algo.com 44 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶0 码力 | 378 页 | 18.45 MB | 1 年前3
 Hello 算法 1.2.0 简体中文 Dart 版“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < ,从而占用 ?(?) 的栈帧空间。 第 2 章 复杂度分析 www.hello‑algo.com 44 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶0 码力 | 378 页 | 18.46 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Dart 版“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < ,从而占用 ?(?) 的栈帧空间。 第 2 章 复杂度分析 www.hello‑algo.com 44 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶0 码力 | 378 页 | 18.46 MB | 10 月前3
 Hello 算法 1.0.0b5 Dart版的数量的统计”,这样以来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < n) { if (n == 1) return; return recur(n - 1); } 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 第 2 章 复杂度分析0 码力 | 376 页 | 30.67 MB | 1 年前3 Hello 算法 1.0.0b5 Dart版的数量的统计”,这样以来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < n) { if (n == 1) return; return recur(n - 1); } 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 第 2 章 复杂度分析0 码力 | 376 页 | 30.67 MB | 1 年前3
 Hello 算法 1.2.0 繁体中文 Dart 版的方法是找一臺計算機,執行這兩個演算法,並監控記錄它們的執行時間和記憶體佔用情況。這種評估方式 能夠反映真實情況,但也存在較大的侷限性。 一方面,難以排除測試環境的干擾因素。硬體配置會影響演算法的效能表現。比如一個演算法的並行度較高, 那麼它就更適合在多核 CPU 上執行,一個演算法的記憶體操作密集,那麼它在高效能記憶體上的表現就會 更好。也就是說,演算法在不同的機器上的測試結果可能是不一致的。這意味著我們需要在各種機器上進行 複雜度分析為我們提供了一把評估演算法效率的“標尺”,使我們可以衡量執行某個演算法所需的時間和空 間資源,對比不同演算法之間的效率。 複雜度是個數學概念,對於初學者可能比較抽象,學習難度相對較高。從這個角度看,複雜度分析可能不太 適合作為最先介紹的內容。然而,當我們討論某個資料結構或演算法的特點時,難以避免要分析其執行速度 和空間使用情況。 綜上所述,建議你在深入學習資料結構與演算法之 表 2‑1 迭代與遞迴特點對比 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 性好 適0 码力 | 378 页 | 18.77 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 Dart 版的方法是找一臺計算機,執行這兩個演算法,並監控記錄它們的執行時間和記憶體佔用情況。這種評估方式 能夠反映真實情況,但也存在較大的侷限性。 一方面,難以排除測試環境的干擾因素。硬體配置會影響演算法的效能表現。比如一個演算法的並行度較高, 那麼它就更適合在多核 CPU 上執行,一個演算法的記憶體操作密集,那麼它在高效能記憶體上的表現就會 更好。也就是說,演算法在不同的機器上的測試結果可能是不一致的。這意味著我們需要在各種機器上進行 複雜度分析為我們提供了一把評估演算法效率的“標尺”,使我們可以衡量執行某個演算法所需的時間和空 間資源,對比不同演算法之間的效率。 複雜度是個數學概念,對於初學者可能比較抽象,學習難度相對較高。從這個角度看,複雜度分析可能不太 適合作為最先介紹的內容。然而,當我們討論某個資料結構或演算法的特點時,難以避免要分析其執行速度 和空間使用情況。 綜上所述,建議你在深入學習資料結構與演算法之 表 2‑1 迭代與遞迴特點對比 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 性好 適0 码力 | 378 页 | 18.77 MB | 10 月前3
共 5 条
- 1













