Hello 算法 1.1.0 Dart版算法:在缓存淘汰(LRU)算法中,我们需要快速找到最近最少使用的数据,以及支持快速添加 和删除节点。这时候使用双向链表就非常合适。 环形链表常用于需要周期性操作的场景,比如操作系统的资源调度。 ‧ 时间片轮转调度算法:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法,它需要对一 组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循 环操作可以通过环形链表来实现。 ‧ 4 贪心算法典型例题 贪心算法常常应用在满足贪心选择性质和最优子结构的优化问题中,以下列举了一些典型的贪心算法问题。 ‧ 硬币找零问题:在某些硬币组合下,贪心算法总是可以得到最优解。 ‧ 区间调度问题:假设你有一些任务,每个任务在一段时间内进行,你的目标是完成尽可能多的任务。如 果每次都选择结束时间最早的任务,那么贪心算法就可以得到最优解。 ‧ 分数背包问题:给定一组物品和一个载重量,你0 码力 | 378 页 | 18.45 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Dart 版算法:在缓存淘汰(LRU)算法中,我们需要快速找到最近最少使用的数据,以及支持快速添加 和删除节点。这时候使用双向链表就非常合适。 环形链表常用于需要周期性操作的场景,比如操作系统的资源调度。 ‧ 时间片轮转调度算法:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法,它需要对一 组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循 环操作可以通过环形链表来实现。 ‧ 4 贪心算法典型例题 贪心算法常常应用在满足贪心选择性质和最优子结构的优化问题中,以下列举了一些典型的贪心算法问题。 ‧ 硬币找零问题:在某些硬币组合下,贪心算法总是可以得到最优解。 ‧ 区间调度问题:假设你有一些任务,每个任务在一段时间内进行,你的目标是完成尽可能多的任务。如 果每次都选择结束时间最早的任务,那么贪心算法就可以得到最优解。 ‧ 分数背包问题:给定一组物品和一个载重量,你0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.0.0b5 Dart版要快速找到最近最少使用的数据,以及支持快速地添 加和删除节点。这时候使用双向链表就非常合适。 循环链表常被用于需要周期性操作的场景,比如操作系统的资源调度。 ‧ 时间片轮转调度算法:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法,它需要对一 组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循 环的操作就可以通过循环链表来实现。 ‧ 1.4 贪心典型例题 贪心算法常常应用在满足贪心选择性质和最优子结构的优化问题中,以下列举了一些典型的贪心算法问题。 ‧ 硬币找零问题:在某些硬币组合下,贪心算法总是可以得到最优解。 ‧ 区间调度问题:假设你有一些任务,每个任务在一段时间内进行,你的目标是完成尽可能多的任务。如 果每次都选择结束时间最早的任务,那么贪心算法就可以得到最优解。 ‧ 分数背包问题:给定一组物品和一个载重量,你的0 码力 | 376 页 | 30.67 MB | 1 年前3
Hello 算法 1.0.0 Dart版算法:在缓存淘汰(LRU)算法中,我们需要快速找到最近最少使用的数据,以及支持快速添加 和删除节点。这时候使用双向链表就非常合适。 环形链表常用于需要周期性操作的场景,比如操作系统的资源调度。 ‧ 时间片轮转调度算法:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法,它需要对一 组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循 环操作可以通过环形链表来实现。 ‧ 4 贪心算法典型例题 贪心算法常常应用在满足贪心选择性质和最优子结构的优化问题中,以下列举了一些典型的贪心算法问题。 ‧ 硬币找零问题:在某些硬币组合下,贪心算法总是可以得到最优解。 ‧ 区间调度问题:假设你有一些任务,每个任务在一段时间内进行,你的目标是完成尽可能多的任务。如 果每次都选择结束时间最早的任务,那么贪心算法就可以得到最优解。 ‧ 分数背包问题:给定一组物品和一个载重量,你0 码力 | 377 页 | 17.56 MB | 1 年前3
共 4 条
- 1













