 Hello 算法 1.1.0 Dart版多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 要通过动画以图解形式展示,而文字则作为解释与补充。 如果你在阅读本书时,发现某段内容提供了如图 0‑2 所示的动画图解,请以图为主、以文字为辅,综合两者 来理解内容。 图 0‑2 动画图解示例 0.2.3 在代码实践中加深理解 本书的配套代码托管在 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输 图 2‑4 递归调用深度 在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出错误。 2. 尾递归 有趣的是,如果函数在返回前的最后一步才进行递归调用,则该函数可以被编译器或解释器优化,使其在空 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。0 码力 | 378 页 | 18.45 MB | 1 年前3 Hello 算法 1.1.0 Dart版多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 要通过动画以图解形式展示,而文字则作为解释与补充。 如果你在阅读本书时,发现某段内容提供了如图 0‑2 所示的动画图解,请以图为主、以文字为辅,综合两者 来理解内容。 图 0‑2 动画图解示例 0.2.3 在代码实践中加深理解 本书的配套代码托管在 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输 图 2‑4 递归调用深度 在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出错误。 2. 尾递归 有趣的是,如果函数在返回前的最后一步才进行递归调用,则该函数可以被编译器或解释器优化,使其在空 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。0 码力 | 378 页 | 18.45 MB | 1 年前3
 Hello 算法 1.0.0 Dart版5 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 要通过动画以图解形式展示,而文字则作为解释与补充。 如果你在阅读本书时,发现某段内容提供了如图 0‑2 所示的动画图解,请以图为主、以文字为辅,综合两者 来理解内容。 图 0‑2 动画图解示例 0.2.3 在代码实践中加深理解 本书的配套代码托管在 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输 图 2‑4 递归调用深度 在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出错误。 2. 尾递归 有趣的是,如果函数在返回前的最后一步才进行递归调用,则该函数可以被编译器或解释器优化,使其在空 间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。0 码力 | 377 页 | 17.56 MB | 1 年前3 Hello 算法 1.0.0 Dart版5 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 要通过动画以图解形式展示,而文字则作为解释与补充。 如果你在阅读本书时,发现某段内容提供了如图 0‑2 所示的动画图解,请以图为主、以文字为辅,综合两者 来理解内容。 图 0‑2 动画图解示例 0.2.3 在代码实践中加深理解 本书的配套代码托管在 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输 图 2‑4 递归调用深度 在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出错误。 2. 尾递归 有趣的是,如果函数在返回前的最后一步才进行递归调用,则该函数可以被编译器或解释器优化,使其在空 间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。0 码力 | 377 页 | 17.56 MB | 1 年前3
 Hello 算法 1.2.0 简体中文 Dart 版多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 要通过动画以图解形式展示,而文字则作为解释与补充。 如果你在阅读本书时,发现某段内容提供了如图 0‑2 所示的动画图解,请以图为主、以文字为辅,综合两者 来理解内容。 图 0‑2 动画图解示例 0.2.3 在代码实践中加深理解 本书的配套代码托管在 图 2‑4 递归调用深度 在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出错误。 2. 尾递归 有趣的是,如果函数在返回前的最后一步才进行递归调用,则该函数可以被编译器或解释器优化,使其在空 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 尾递归:求和操作是在“递”的过程中执行的,“归”的过程只需层层返回。 第 2 章 复杂度分析 www.hello‑algo.com 25 图 2‑5 尾递归过程 Tip 请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即 使函数是尾递归形式,仍然可能会遇到栈溢出问题。 3. 递归树 当处理与“分治”相关的算法问题时,递归往往比迭代的思路更加直观、代码更加易读。以“斐波那契数列”0 码力 | 378 页 | 18.46 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Dart 版多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 要通过动画以图解形式展示,而文字则作为解释与补充。 如果你在阅读本书时,发现某段内容提供了如图 0‑2 所示的动画图解,请以图为主、以文字为辅,综合两者 来理解内容。 图 0‑2 动画图解示例 0.2.3 在代码实践中加深理解 本书的配套代码托管在 图 2‑4 递归调用深度 在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出错误。 2. 尾递归 有趣的是,如果函数在返回前的最后一步才进行递归调用,则该函数可以被编译器或解释器优化,使其在空 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 尾递归:求和操作是在“递”的过程中执行的,“归”的过程只需层层返回。 第 2 章 复杂度分析 www.hello‑algo.com 25 图 2‑5 尾递归过程 Tip 请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即 使函数是尾递归形式,仍然可能会遇到栈溢出问题。 3. 递归树 当处理与“分治”相关的算法问题时,递归往往比迭代的思路更加直观、代码更加易读。以“斐波那契数列”0 码力 | 378 页 | 18.46 MB | 10 月前3
 Hello 算法 1.0.0b5 Dart版注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 要通过动画和图解形式展示,而文字则作为动画和图片的解释与补充。 如果你在阅读本书时,发现某段内容提供了图 0‑2 所示的动画或图解,请以图为主、以文字为辅,综合两者 来理解内容。 图 0‑2 动画图解示例 第 0 章 前言 hello‑algo 图 2‑4 递归调用深度 在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出报错。 2. 尾递归 有趣的是,如果函数在返回前的最后一步才进行递归调用,则该函数可以被编译器或解释器优化,使其在空 间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 求和操作。 ‧ 尾递归:求和操作是在“递”的过程中执行的,“归”的过程只需层层返回。 第 2 章 复杂度分析 hello‑algo.com 24 图 2‑5 尾递归过程 请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即使函数 是尾递归形式,但仍然可能会遇到栈溢出问题。 3. 递归树 当处理与“分治”相关的算法问题时,递归往往比迭代的思路更0 码力 | 376 页 | 30.67 MB | 1 年前3 Hello 算法 1.0.0b5 Dart版注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 要通过动画和图解形式展示,而文字则作为动画和图片的解释与补充。 如果你在阅读本书时,发现某段内容提供了图 0‑2 所示的动画或图解,请以图为主、以文字为辅,综合两者 来理解内容。 图 0‑2 动画图解示例 第 0 章 前言 hello‑algo 图 2‑4 递归调用深度 在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出报错。 2. 尾递归 有趣的是,如果函数在返回前的最后一步才进行递归调用,则该函数可以被编译器或解释器优化,使其在空 间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 求和操作。 ‧ 尾递归:求和操作是在“递”的过程中执行的,“归”的过程只需层层返回。 第 2 章 复杂度分析 hello‑algo.com 24 图 2‑5 尾递归过程 请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即使函数 是尾递归形式,但仍然可能会遇到栈溢出问题。 3. 递归树 当处理与“分治”相关的算法问题时,递归往往比迭代的思路更0 码力 | 376 页 | 30.67 MB | 1 年前3
 Hello 算法 1.2.0 繁体中文 Dart 版表現。比如一個演算法的並行度較高, 那麼它就更適合在多核 CPU 上執行,一個演算法的記憶體操作密集,那麼它在高效能記憶體上的表現就會 更好。也就是說,演算法在不同的機器上的測試結果可能是不一致的。這意味著我們需要在各種機器上進行 測試,統計平均效率,而這是不現實的。 另一方面,展開完整測試非常耗費資源。隨著輸入資料量的變化,演算法會表現出不同的效率。例如,在輸 入資料量較小時,演算法 A 圖 2‑4 遞迴呼叫深度 在實際中,程式語言允許的遞迴深度通常是有限的,過深的遞迴可能導致堆疊溢位錯誤。 2. 尾遞迴 有趣的是,如果函式在返回前的最後一步才進行遞迴呼叫,則該函式可以被編譯器或直譯器最佳化,使其在 空間效率上與迭代相當。這種情況被稱為尾遞迴(tail recursion)。 ‧ 普通遞迴:當函式返回到上一層級的函式後,需要繼續執行程式碼,因此系統需要儲存上一層呼叫的上 下文。 尾遞迴:求和操作是在“遞”的過程中執行的,“迴”的過程只需層層返回。 第 2 章 複雜度分析 www.hello‑algo.com 25 圖 2‑5 尾遞迴過程 Tip 請注意,許多編譯器或直譯器並不支持尾遞迴最佳化。例如,Python 預設不支持尾遞迴最佳化,因 此即使函式是尾遞迴形式,仍然可能會遇到堆疊溢位問題。 3. 遞迴樹 當處理與“分治”相關的演算法問題時,遞迴往往比迭代的0 码力 | 378 页 | 18.77 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 Dart 版表現。比如一個演算法的並行度較高, 那麼它就更適合在多核 CPU 上執行,一個演算法的記憶體操作密集,那麼它在高效能記憶體上的表現就會 更好。也就是說,演算法在不同的機器上的測試結果可能是不一致的。這意味著我們需要在各種機器上進行 測試,統計平均效率,而這是不現實的。 另一方面,展開完整測試非常耗費資源。隨著輸入資料量的變化,演算法會表現出不同的效率。例如,在輸 入資料量較小時,演算法 A 圖 2‑4 遞迴呼叫深度 在實際中,程式語言允許的遞迴深度通常是有限的,過深的遞迴可能導致堆疊溢位錯誤。 2. 尾遞迴 有趣的是,如果函式在返回前的最後一步才進行遞迴呼叫,則該函式可以被編譯器或直譯器最佳化,使其在 空間效率上與迭代相當。這種情況被稱為尾遞迴(tail recursion)。 ‧ 普通遞迴:當函式返回到上一層級的函式後,需要繼續執行程式碼,因此系統需要儲存上一層呼叫的上 下文。 尾遞迴:求和操作是在“遞”的過程中執行的,“迴”的過程只需層層返回。 第 2 章 複雜度分析 www.hello‑algo.com 25 圖 2‑5 尾遞迴過程 Tip 請注意,許多編譯器或直譯器並不支持尾遞迴最佳化。例如,Python 預設不支持尾遞迴最佳化,因 此即使函式是尾遞迴形式,仍然可能會遇到堆疊溢位問題。 3. 遞迴樹 當處理與“分治”相關的演算法問題時,遞迴往往比迭代的0 码力 | 378 页 | 18.77 MB | 10 月前3
共 5 条
- 1













