Hello 算法 1.2.0 简体中文 Dart 版或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 到一个家庭,社会的主要组织形式呈现出“树”的特征;冬天的衣服就像“栈”,最先穿上的最后才能脱下; 羽毛球筒则如同“队列”,一端放入、另一端取出;字典就像一个“哈希表”,能够快速查找目标词条。 本书旨在通过清晰易懂的动画图解和可运行的代码示例, 位数的整数(例如学号),那么我们就可以用效率更高的“基数排序”来做,将时间复杂度降为 ?(??) , 其中 ? 为位数。当数据体量很大时,节省出来的运行时间就能创造较大价值(成本降低、体验变好等)。 在工程领域中,大量问题是难以达到最优解的,许多问题只是被“差不多”地解决了。问题的难易程度一方 面取决于问题本身的性质,另一方面也取决于观测问题的人的知识储备。人的知识越完备、经验越多,分析 问题就会越深入,问题就能被解决得更优雅。 非常贵,随 CPU 打包计价 我们可以将计算机存储系统想象为图 4‑9 所示的金字塔结构。越靠近金字塔顶端的存储设备的速度越快、容 量越小、成本越高。这种多层级的设计并非偶然,而是计算机科学家和工程师们经过深思熟虑的结果。 ‧ 硬盘难以被内存取代。首先,内存中的数据在断电后会丢失,因此它不适合长期存储数据;其次,内存 的成本是硬盘的几十倍,这使得它难以在消费者市场普及。 ‧ 缓存的大容量和高速度难以兼得。随着0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.1.0 Dart版或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 到一个家庭,社会的主要组织形式呈现出“树”的特征;冬天的衣服就像“栈”,最先穿上的最后才能脱下; 羽毛球筒则如同“队列”,一端放入、另一端取出;字典就像一个“哈希表”,能够快速查找目标词条。 本书旨在通过清晰易懂的动画图解和可运行的代码示例, 非常贵,随 CPU 打包计价 我们可以将计算机存储系统想象为图 4‑9 所示的金字塔结构。越靠近金字塔顶端的存储设备的速度越快、容 量越小、成本越高。这种多层级的设计并非偶然,而是计算机科学家和工程师们经过深思熟虑的结果。 ‧ 硬盘难以被内存取代。首先,内存中的数据在断电后会丢失,因此它不适合长期存储数据;其次,内存 的成本是硬盘的几十倍,这使得它难以在消费者市场普及。 ‧ 缓存的大容量和高速度难以兼得。随着 两种实现的对比结论与栈一致,在此不再赘述。 5.2.3 队列典型应用 ‧ 淘宝订单。购物者下单后,订单将加入队列中,系统随后会根据顺序处理队列中的订单。在双十一期 间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。 ‧ 各类待办事项。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等, 队列在这些场景中可以有效地维护处理顺序。 5.3 双向队列 在队列中,0 码力 | 378 页 | 18.45 MB | 1 年前3
Hello 算法 1.0.0 Dart版非常贵,随 CPU 打包计价 我们可以将计算机存储系统想象为图 4‑9 所示的金字塔结构。越靠近金字塔顶端的存储设备的速度越快、容 量越小、成本越高。这种多层级的设计并非偶然,而是计算机科学家和工程师们经过深思熟虑的结果。 ‧ 硬盘难以被内存取代。首先,内存中的数据在断电后会丢失,因此它不适合长期存储数据;其次,内存 的成本是硬盘的几十倍,这使得它难以在消费者市场普及。 ‧ 缓存的大容量和高速度难以兼得。随着 两种实现的对比结论与栈一致,在此不再赘述。 5.2.3 队列典型应用 ‧ 淘宝订单。购物者下单后,订单将加入队列中,系统随后会根据顺序处理队列中的订单。在双十一期 间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。 ‧ 各类待办事项。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等, 队列在这些场景中可以有效地维护处理顺序。 5.3 双向队列 在队列中, 数据完整性检查:数据发送方可以计算数据的哈希值并将其一同发送;接收方可以重新计算接收到的 数据的哈希值,并与接收到的哈希值进行比较。如果两者匹配,那么数据就被视为完整。 对于密码学的相关应用,为了防止从哈希值推导出原始密码等逆向工程,哈希算法需要具备更高等级的安全 特性。 ‧ 单向性:无法通过哈希值反推出关于输入数据的任何信息。 第 6 章 哈希表 hello‑algo.com 130 ‧ 抗碰撞性:应当极难找到两个不同的输入,使得它们的哈希值相同。0 码力 | 377 页 | 17.56 MB | 1 年前3
Hello 算法 1.0.0b5 Dart版两种实现的对比结论与栈一致,在此不再赘述。 5.2.3 队列典型应用 ‧ 淘宝订单。购物者下单后,订单将加入队列中,系统随后会根据顺序依次处理队列中的订单。在双十一 期间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。 ‧ 各类待办事项。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等。 队列在这些场景中可以有效地维护处理顺序。 5.3 双向队列 在队列中, 数据完整性检查:数据发送方可以计算数据的哈希值并将其一同发送;接收方可以重新计算接收到的 数据的哈希值,并与接收到的哈希值进行比较。如果两者匹配,那么数据就被视为完整的。 对于密码学的相关应用,为了防止从哈希值推导出原始密码等逆向工程,哈希算法需要具备更高等级的安全 特性。 ‧ 抗碰撞性:应当极其困难找到两个不同的输入,使得它们的哈希值相同。 第 6 章 哈希表 hello‑algo.com 123 ‧ 雪崩效应:输入的 足无后效性。对于这类问题,我们通常会选择 使用其他方法,例如启发式搜索、遗传算法、强化学习等,从而在有限时间内得到可用的局部最优解。 14.3 动态规划解题思路 上两节介绍了动态规划问题的主要特征,接下来我们一起探究两个更加实用的问题。 1. 如何判断一个问题是不是动态规划问题? 2. 求解动态规划问题该从何处入手,完整步骤是什么? 14.3.1 问题判断 总的来说,如果一个问题包含0 码力 | 376 页 | 30.67 MB | 1 年前3
Hello 算法 1.2.0 繁体中文 Dart 版固定位數的整數(例如學號),那麼我們就可以用效率更高的“基數排序”來做,將時間複雜度降為 ?(??) ,其中 ? 為位數。當資料體量很大時,節省出來的執行時間就能創造較大價值(成本降低、體 驗變好等)。 在工程領域中,大量問題是難以達到最優解的,許多問題只是被“差不多”地解決了。問題的難易程度一方 面取決於問題本身的性質,另一方面也取決於觀測問題的人的知識儲備。人的知識越完備、經驗越多,分析 問題就會越深入,問題就能被解決得更優雅。 非常貴,隨 CPU 打包計價 我們可以將計算機儲存系統想象為圖 4‑9 所示的金字塔結構。越靠近金字塔頂端的儲存裝置的速度越快、容 量越小、成本越高。這種多層級的設計並非偶然,而是計算機科學家和工程師們經過深思熟慮的結果。 第 4 章 陣列與鏈結串列 www.hello‑algo.com 84 ‧ 硬碟難以被記憶體取代。首先,記憶體中的資料在斷電後會丟失,因此它不適合長期儲存資料;其次, 兩種實現的對比結論與堆疊一致,在此不再贅述。 5.2.3 佇列典型應用 ‧ 淘寶訂單。購物者下單後,訂單將加入列列中,系統隨後會根據順序處理佇列中的訂單。在雙十一期 間,短時間內會產生海量訂單,高併發成為工程師們需要重點攻克的問題。 ‧ 各類待辦事項。任何需要實現“先來後到”功能的場景,例如印表機的任務佇列、餐廳的出餐佇列等, 佇列在這些場景中可以有效地維護處理順序。 5.3 雙向佇列 在佇列中,0 码力 | 378 页 | 18.77 MB | 10 月前3
共 5 条
- 1













