Hello 算法 1.1.0 Dart版3 列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 内存与缓存 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5 小结 . . . . . 序便可以访问内存中的数据。 图 3‑2 内存条、内存空间、内存地址 Tip 值得说明的是,将内存比作 Excel 表格是一个简化的类比,实际内存的工作机制比较复杂,涉及地址 空间、内存管理、缓存机制、虚拟内存和物理内存等概念。 内存是所有程序的共享资源,当某块内存被某个程序占用时,则无法被其他程序同时使用了。因此在数据结 构与算法的设计中,内存资源是一个重要的考虑因素。比如,算法所占用的内存峰值不应超过系统剩余空闲 优化数据结构的操作效率。 ‧ 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问:数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。0 码力 | 378 页 | 18.45 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Dart 版3 列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 内存与缓存 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5 小结 . . . . . 序便可以访问内存中的数据。 图 3‑2 内存条、内存空间、内存地址 Tip 值得说明的是,将内存比作 Excel 表格是一个简化的类比,实际内存的工作机制比较复杂,涉及地址 空间、内存管理、缓存机制、虚拟内存和物理内存等概念。 内存是所有程序的共享资源,当某块内存被某个程序占用时,则通常无法被其他程序同时使用了。因此在数 据结构与算法的设计中,内存资源是一个重要的考虑因素。比如,算法所占用的内存峰值不应超过系统剩余 优化数据结构的操作效率。 ‧ 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问:数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.0.0 Dart版3 列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 内存与缓存 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5 小结 . . . . . ,程序便可以访问内存中的数据。 图 3‑2 内存条、内存空间、内存地址 � 值得说明的是,将内存比作 Excel 表格是一个简化的类比,实际内存的工作机制比较复杂,涉 及地址空间、内存管理、缓存机制、虚拟内存和物理内存等概念。 内存是所有程序的共享资源,当某块内存被某个程序占用时,则无法被其他程序同时使用了。因此在数据结 构与算法的设计中,内存资源是一个重要的考虑因素。比如,算法所占用的内存峰值不应超过系统剩余空闲 优化数据结构的操作效率。 ‧ 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问:数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。0 码力 | 377 页 | 17.56 MB | 1 年前3
Hello 算法 1.0.0b5 Dart版优化数据结构的操作效率。 ‧ 空间效率高: 数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问: 数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性: 当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下缺点。 ‧ 插入与删除效率低: 当数组中元素较多时,插入与删除操作需要移动大量的元素。 此各种性质和 操作效率也呈现对立的特点。 表 4‑1 数组与链表的效率对比 第 4 章 数组与链表 hello‑algo.com 73 数组 链表 存储方式 连续内存空间 离散内存空间 缓存局部性 友好 不友好 容量扩展 长度不可变 可灵活扩展 内存效率 占用内存少、浪费部分空间 占用内存多 访问元素 ?(1) ?(?) 添加元素 ?(?) ?(1) 删除元素 ?(?) ?(1) 向父节点的引用来实现,类似于双向链表。 ‧ 浏览器历史:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和 后一个网页。双向链表的特性使得这种操作变得简单。 ‧ LRU 算法:在缓存淘汰算法(LRU)中,我们需要快速找到最近最少使用的数据,以及支持快速地添 加和删除节点。这时候使用双向链表就非常合适。 循环链表常被用于需要周期性操作的场景,比如操作系统的资源调度。 ‧ 时0 码力 | 376 页 | 30.67 MB | 1 年前3
Hello 算法 1.2.0 繁体中文 Dart 版动态数组 動態陣列 hard disk 硬盘 硬碟 random‑access memory (RAM) 内存 記憶體 cache memory 缓存 快取 cache miss 缓存未命中 快取未命中 cache hit rate 缓存命中率 快取命中率 stack 栈 堆疊 top of the stack 栈顶 堆疊頂 bottom of the stack 栈底 堆疊底 queue0 码力 | 378 页 | 18.77 MB | 10 月前3
共 5 条
- 1













