Trends Artificial Intelligence
newer entrants, monetization may lag build-out by quarters or even years. And then there’s the supply chain. Power availability is becoming more of a gating factor. Transformers, substations, turbines infrastructure is heading, it helps to examine the rising tension between AI capability and electrical supply. The growing scale and sophistication of artificial intelligence is demanding an extraordinary gains… AI is already being deployed by energy companies to transform and optimize energy and mineral supply, electricity generation and transmission, and energy consumption (p. 16). Current AI-driven demand0 码力 | 340 页 | 12.14 MB | 4 月前3
Google 《Prompt Engineering v7》prompting 19 Role prompting 21 Contextual prompting 23 Table of contents Step-back prompting 25 Chain of Thought (CoT) 29 Self-consistency 32 Tree of Thoughts (ToT) 36 ReAct (reason & act) 37 Automatic techniques you can increase the accuracy of your prompts. Prompt Engineering February 2025 29 Chain of Thought (CoT) Chain of Thought (CoT) 9 prompting is a technique for improving the reasoning capabilities more complex tasks that require reasoning before responding as it’s a challenge with a zero-shot chain of thought. CoT has a lot of advantages. First of all, it’s low-effort while being very effective0 码力 | 68 页 | 6.50 MB | 6 月前3
DeepSeek从入门到精通(20250204)4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 4. 使用“跨域应用”提示探索新的应用场景 深度融合:整合知识与创意的提示语链优化策略 • 逻辑链(Logic Chain):确保推理的严密性和论证的连贯性 • 知识链(Knowledge Chain):激活和应用相关领域知识 • 创意链(Creativity Chain):促进创新思维和独特见解 三链融合模型 逻辑链优化策略 知识链优化策略 • 应用形式逻辑原理 • 构建论证结构图0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 4. 使用“跨域应用”提示探索新的应用场景 深度融合:整合知识与创意的提示语链优化策略 • 逻辑链(Logic Chain):确保推理的严密性和论证的连贯性 • 知识链(Knowledge Chain):激活和应用相关领域知识 • 创意链(Creativity Chain):促进创新思维和独特见解 三链融合模型 逻辑链优化策略 知识链优化策略 • 应用形式逻辑原理 • 构建论证结构图0 码力 | 103 页 | 5.40 MB | 8 月前3
DeepSeek图解10页PDFDeepSeek-R1 核心贡献:首次验证了通过纯强化学习也能大幅提升大模 型推理能力,开源纯强化学习推理模型 DeepSeek-R1-Zero R1-Zero 能生成高质量的推理数据,包括大量长链式思维(Chain-of-Thought, CoT)示例,用于支持后续的 SFT 阶段,如图7所示。更加详细介绍参考3.2节。 3.1.2 核心创新 2:通用强化学习 第一阶段 R1-Zero 虽然展现出惊人的推理能力提升,但是也出现了回复时0 码力 | 11 页 | 2.64 MB | 8 月前3
DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language ModelChung, A. Chowdhery, Q. V. Le, E. H. Chi, D. Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022. A. Vaswani, N. Shazeer, N. Parmar0 码力 | 52 页 | 1.23 MB | 1 年前3
共 6 条
- 1













