积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(5)人工智能(5)

语言

全部英语(4)zh(1)

格式

全部PDF文档 PDF(5)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 5 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    a codebase, so it’s important to keep track of your prompt engineering work in a disciplined, structured way. More on this table format, the importance of tracking prompt engineering work, and the prompt selecting, parsing, ordering, ranking, or categorizing data try having your output returned in a structured format like JSON or XML. There are some benefits in returning JSON objects from a prompt that an example on how to return structured output. JSON Repair While returning data in JSON format offers numerous advantages, it's not without its drawbacks. The structured nature of JSON, while beneficial
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    operate until an exit condition is reached. Common exit conditions include tool calls, 
 a certain structured output, errors, or reaching a maximum number of turns. 14 A practical guide to building agents pattern, the same principles apply: keep components flexible, composable, and driven by clear, well-structured prompts. 17 A practical guide to building agents Manager pattern The manager pattern empowers agents, start with strong foundations: pair capable models with well-defined tools and clear, structured instructions. Use orchestration patterns that match your complexity level, starting with a single
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    on proprietary industry data. These platforms already have the workflows, the trust, and the structured data that AI thrives on. That gives them a head start in deploying domain-specific intelligence receive a plain-language fault diagnosis; a clinician can attach an X-ray to a note and get a structured report draft; and an analyst can combine charts, transcripts, and audio clips in a single query high school student to those of a PhD candidate. Professions centered on intaking large bodies of structured, historical data and outputting rules-based decisions and judgement, fall squarely in the core
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    com/mozilla/LPCNet) by ~40% - Bonus: Real-time on mobile CPUs for free 6 TVM specifics X78Structured and Unstructured Sparsity - Lots of 'free' wins from exploring sparsity in modern ML models
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    answer was to conduct intensive evals for every proposed application. An eval is simply a rigorous, structured process for measuring how AI models actually perform against benchmarks 
 in a given use case.
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
共 5 条
  • 1
前往
页
相关搜索词
GooglePromptEngineeringv7OpenAIpracticalguidetobuildingagentsTrendsArtificialIntelligenceFacebookTVMAWSMeetupTalkAIintheEnterprise
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩