积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(6)人工智能(6)

语言

全部英语(5)zh(1)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 6 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models t h u b . c o m / d e e p s e e k - a i / D e e p S e e k - V 2 . 0 20 40 60 80 100 Activated Parameters (Billions) 55 60 65 70 75 80 Performance (MMLU) DeepSeek-V2 DeepSeek 67B LLaMA 1 33B
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    AI Safety 4/24: Meta Platforms releases its open- source** Llama 3 model with 70B parameters 5/24: Google introduces AI overviews to augment its search functions 9/24: Alibaba releases 246-247246 Next AI Use Case Frontier – Protein Sequencing = Model Size +290% Annually to 98 Billion Parameters Over Four Years Note: List of models may not be comprehensive. Source: Stanford RAISE Health via Protein Sequencing Models (B Parameters) – 2020-2024, per Stanford RAISE Health 0 50 100 ProGen ProtBert ProGen 2 ProT5 ESM2 ESM3 +290% / Year Number of Parameters, B 2020 2022 2023 2024214MM
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    specialized code-generation techniques (TVM, Xbyak, etc) - Interesting new tradeoffs - how const are parameters? - structure specialization trades off icache/ dcache - also available today in FBGEMMPyTorch
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    weight3 weight2 output What are not supported yet? ● Duplicated inputs optimization (e.g., reused parameters) ● Multiple outputs (e.g., batch normalization) ● Subgraph merging (e.g., conv2d + ReLU)© 2019
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    tools. Use multiple agents 
 if improving tool clarity by providing descriptive names, 
 clear parameters, and detailed descriptions doesn’t 
 improve performance. 16 A practical guide to building agents
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    creative ways. It changes the final prompt doing the task by utilizing more knowledge in the LLM’s parameters than would otherwise come into play when the LLM is prompted directly. It can help to mitigate
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
共 6 条
  • 1
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceFacebookTVMAWSMeetupTalkBringYourOwnCodegentoOpenAIpracticalguidebuildingagentsGooglePromptEngineeringv7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩